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Abstract—Industrial Internet of Things (IIoT) is a relatively
new area of research that utilises multidisciplinary and holistic
approaches to develop smart solutions for complex problems in
industrial environments. Designing applications for the IIoT is a
non trivial issue and requires to address, among many others,
technology concerns, the protection of personal data, and the
privacy of individuals. In this review paper, we identify privacy-
preserving solutions that have been proposed in the literature to
safeguard the privacy of individuals being part, or interacting
with, the IIoT environment. As such, it considers two main
categories of the analysed protocols, i.e., the privacy-preserving
data management and processing solutions, and the privacy-
preserving authentication methods.

Index Terms—Industrial Internet of Things (IIoT), Privacy,
Privacy-preserving solutions, Privacy-preserving authentication
methods, Literature review.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is a relatively new
area of research and development, where well-established
technologies and solutions are still missing [1]. The con-
vergence of Information Technology (IT) and Operational
Technology (OT) is an important issue for industries and
common approaches for product and services development
must be presented for a successful exploitation of IIoT tech-
nologies. In the shop floor, implementing IIoT applications
is a systems engineering problem and a multidisciplinary and
holistic approach is required to develop solutions for complex
problems comprising hardware, software, data, machinery and
personnel.

The design of IIoT applications requires addressing new
requirements including those related to edge and fog com-
puting, efficient communication architectures, cyber security,
privacy, scalability, protocol support and cognitive computing.
The adoption of open IIoT standards, specifications, and
architectures will also help IIoT dominate the industry. In the
last years the following two organisations have been promoting
the IIoT:

• Industrial Internet Consortium (IIC – https://www.
iiconsortium.org), which follows a cross-domain ap-
proach to accelerate the development, adoption and
widespread of the IIoT.

• Plattform Industrie 4.0 (https://www.plattform-i40.de),
which focuses on the concepts of efficient manufacturing
and the smart factory (in Germany).

Both groups have developed reference architectures, the In-
dustrial Internet Reference Architecture (IIRA) [2] and the
Reference Architectural Model Industry 4.0 (RAMI 4.0) [3],
respectively, to help streamline the standardization and adop-
tion of IIoT technology.

Related to security and privacy issues, in 2016, IIC released
the Industrial Internet Security Framework (IISF) technical
report [4] initiating a procedure to create broad industry
consensus on how to secure and increase trustworthiness of
IIoT systems. The framework considers functional and imple-
mentation viewpoints, as well as technologies and practices
that affect the security and privacy of IIoT systems. Also,
it emphasizes the fact that security and privacy must be a
fundamental part of the IIoT system architecture during all
phases (design, implementation and operation). Furthermore,
it suggests enhancements in IIoT privacy while still allowing
data analytics using techniques, such as homomorphic encryp-
tion.

Privacy, in the physical world, is a vague concept that cannot
be easily defined, and might be affected by the individual’s
perception on the protection of its own personal environment.
Privacy is also sometimes related to anonymity, the desire to
remain unnoticed or unrecognized in public. In information
technology, it is known as information or data privacy, refers to
the development of relationships between technology and the
legal right to, or public expectation of, privacy in the collection
and sharing of personal data [5].

Privacy concerns exist wherever uniquely identifiable data
relating to an individual is collected and processed. In other
cases the issue is how personal data is collected and who has
access to it. Additionally, another issue is whether an individ-
ual has any ownership rights to his/her personal data, and the
right to view, verify, delete and challenge that information.
From a legal point of view, privacy enforcement typically
comes from the applicable legal framework in each country,
such as the General Data Protection Regulation (GDPR) [6]



in the European Union that gives citizens control over their
personal data.

In this review paper, we focused, via a literature search
process, on the identification of privacy-preserving solutions
that try to address various privacy issues in the IIoT, such as
anonymity and personal data processing. The list of solutions
presented here is not meant to be an exhaustive list for the
domain. Various other solutions, typically proposed for the
more generic IoT environment, could also apply. However, in
this paper the authors only analyse those that were specifically
proposed for the IIoT and therefore address the peculiarities of
the industrial environment. To the best of our knowledge, this
is the first work that discovers explicitly privacy techniques for
the IIoT, except for [7] which, however, covers both security
and privacy issues without differentiating its analysis to each
one of these issues.

The rest of this review paper is structured as follows.
Section II describes the methodology used in conducting this
research. Section III presents privacy-preserving solutions for
data management and processing focused on the IIoT domain,
while Section IV presents schemes that have been proposed to
protect the privacy of the users that access IIoT data. Finally,
Section V concludes the paper.

II. RESEARCH METHODOLOGY

The methodology that we followed to identify the relevant
privacy-preserving solutions in the IIoT consists of two main
steps:

1) Extensive search in the research publications performed
in Scopus search engine (www.scopus.com), a well-
known search engine for many sciences. The aim of
our search was to identify papers that are most related
to the research question which is to identify “privacy-
preserving solutions that have been proposed specifically
for the IIoT environment”. As such, we searched for the
related keywords of “IIoT” and “privacy” in the title,
abstract and keywords of publications. The exact query
that was used in April 2020 and returned us 220 relevant
papers, was the following:

TITLE-ABS-KEY((IIoT OR "Industrial
Internet of Things" OR "Industrial

IoT" OR "Industry 4.0") AND Privacy)

2) By studying the list of publications that was returned
by Scopus we were able to narrow down even more
the relevant, to our subject, papers. In this step, we
considered solutions that were proposed specifically for
the IIoT. As such, we also excluded mechanisms that
aim to solve other issues, yet one of their properties is
to safeguard privacy or satisfy, among others, privacy
issues.

Figure 1 shows (i) the yearly distribution of publications
that deal with privacy solutions in the IIoT, and (ii) the
percentage of these publications in the total number of IIoT
publications (specified by the first part of our query). This
illustrates the increasing interest of the research community
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Fig. 1. Number and percentage of IIoT privacy-preserving publications per
year in Scopus.

to propose privacy-preserving solutions in the IIoT. Based on
these statistics, we infer that the IIoT interest in this kind of
solutions shows a mean increase in the number of published
papers of approximately 15% per annum during the last 6
years. Also, we should mention that the high percentage of
privacy-preserving solutions in the IIoT in 2014 was the result
of the low number of the total IIoT publications and after that
this number increases by an average of 116% per year.

The analysis conducted on these papers revealed that they
can be categorised under two main categories, i.e., the ones
that focus on applying privacy-protection on data generated
and managed in the IIoT, presented in Section III, and the
ones which protect the privacy of the entity that accesses this
data, presented in Section IV. The papers are presented in
chronological order. A comparative analysis of privacy-related
properties of the analysed papers is presented in Table I.

III. PRIVACY-PRESERVING DATA MANAGEMENT AND
PROCESSING SOLUTIONS IN IIOT

In this section, we present solutions that have proposed to
protect and manage personal data in the IIoT.

A. Location Privacy Protection Based on Differential Privacy
Strategy for Big Data in IIoT (LPT-DP-k)

LPT-DP-k, proposed by Yin et al. [8], is a location privacy
protection algorithm that utilises a differential privacy strategy
to preserve location data in sensor networks and maximise
the utility of data in IIoT. In the proposed solution, the
authors introduce a tree structure to model the location data,
called location privacy tree (LPT). This structure mitigates any
difficulties, such as characteristics of low density and high
dispersion, to express the location data.

The differential privacy utilised in the proposed method
achieves privacy protection using Laplace and index mech-
anism. The index mechanism is used to select data according
to the accessing frequency of the tree node and the Laplace



TABLE I
COMPARISON OF PRIVACY-PRESERVING SOLUTIONS IN THE IIOT.

Proposed Solution Privacy-Preserving Provided Service Utilised Technologies/Architectures Underlying Privacy Mechanisms Security Analysis Implementation

Privacy-preserving data management and processing solutions (Section III):

LPT-DP-k [8] Location data publishing
and sharing

Laplace noise Location privacy tree (LPT)
& Differential privacy

– Experimental

PPTMC [9] Multiple clustering Public/Private cloud
computing, TMC

Paillier homomorphic encryption
& Perturbation

Informal Experimental

HKFS-KM [10] Information retrieval
& Key management

Cloud computing, Keyed
hash tree (KHT), TFIDF

Searchable encryption (XTS-AES) Formal Experimental

HTPF [11] Trust and privacy framework – Privacy checkpoints and guidelines – –

Xyreum [12] Multi-factor authentication
& Key establishment

Blockchain, REMME protocol T-ZKPK & Authenticated encryption Informal Experimental

DeepPAR &
DeepDPA [13]

Distributed machine Learning Federated learning
& Group key management

Additive homomorphic encryption Informal Experimental

BFL-PPDS [14] Distributed machine learning Permissioned blockchain,
Federated learning

Differential privacy Informal Experimental

BIoE [15] Task allocation Ethereum blockchain,
Edge computing

Differential privacy Informal Experimental

HI 4.0 [16] Cross-border eHealth
data exchange

RAMI 4.0, OpenNCP Consent management
& Data hiding tools

– –

PDASH [17] Privacy dashboard HUMAN trust and privacy
framework (HTPF)

Privacy by design – –

PPDSMP [18] Data Sharing – Differential privacy
& Data perturbation

– Experimental

LDA-EPP [19] Data aggregation Cloud & fog computing,
Hash chain, CRT

Paillier homomorphic encryption Informal Experimental

Privacy-preserving authentication solutions (Section IV):

P2SAP [20] Anonymous entity authentication Biometrics, ECC Dynamic identities & Untraceability Formal & Informal Simulation (NS-3)

ALCMAKA [21] Anonymous entity authentication Biometrics, Smart cards, Passwords Pseudo-identities & Untraceability Formal & Informal Simulation (NS-2)

BP2UA [22] Anonymous entity authentication Biometrics Pseudo-identities & Untraceability Formal & Informal Simulation (NS-2)

HCPPA-KE [23] Anonymous entity authentication Passwords Pseudonyms Formal & Informal –

mechanism adds appropriate noise to change this frequency.
The experimental results showed that the proposed method
protects users’ privacy without significant negative effects in
the utility of data and the processing efficiency.

B. Privacy-Preserving Tensor-Based Multiple Clusterings on
Cloud for IIoT (PPTMC)

Zhao et al. in [9] proposed a privacy-preserving tensor-based
multiple clustering method (PPTMC) on a hybrid cloud (public
and private) in order to provide an efficient, scalable and secure
solution discovering different, hidden data structures in IIoT
big data. In this work, the authors present a privacy-preserving
approach solving the problem of tensor-based multiple clus-
tering (TMC) based on the Paillier homomorphic encryption.
Apart from the development of the proposed PPTCM method,
the following security protocols for computations over en-
crypted data have also been developed: secure exponentiation
(SE), secure attribute weight ranking (SAWR), and secure
selective weighted tensor distance (SSWTD).

All computational tasks are implemented on the cloud and
users’ privacy is preserved because data encryption and the
required perturbations are performed on the client. An informal
security analysis of PPTMC is also presented. Experimental
results show that the presented scheme achieves 100% cluster-
ing accuracy compared to the plaintext TMC method, and is
scalable when using more cloud servers, while no additional
or private information is leaked.

C. Hybrid Keyword-Field Search with Efficient Key Manage-
ment for IIoT (HKFS-KM)

HKFS-KM, proposed by Miao et al. [10], is an outsourced
hybrid keyword-field search over encrypted data with efficient
key management scheme in the IIoT (Figure 2). The hybrid
keyword-field search includes both textual and digital keyword
fields utilising term frequency-inverse document frequency
(TFIDF) metric and specific range of numeric data score
function, accordingly. Furthermore, the proposed scheme im-
plements a key management functionality to reduce massive
keys storage using a keyed hash tree (KHT).

Additionally, the proposed searchable encryption scheme is
supported by the XTS-AES algorithm [24] for the encryption
of IIoT data records. The authors provide a formal security
analysis that proves that the proposed HKFS-KM scheme
can guarantee keyword privacy and trapdoor unlinkability for
known ciphertexts attack and known background attack. The
experimental results demonstrate the feasibility and efficiency
of the HKFS-KM scheme using real-world datasets.

D. A Trust and Privacy Framework for Smart Manufacturing
Systems (HTPF)

In this work, Mannhardt et al. [11] present a trust and
privacy framework for smart manufacturing systems that al-
lows understanding the concepts of trust and privacy, when
designing solutions, for the benefit of manufactures. This work
highlights the need for considering privacy and trust in smart



Fig. 2. HKFS-KM system model [10].

manufacturing environments particularly when humans are in
the loop (operators, managers, etc.). The proposed framework
integrates the trust and privacy perspectives, takes into account
the data life-cycle in IIoT environments, covers technologi-
cal and organisational issues limited to the legal framework
of an organisation, in order to propose privacy checkpoints
with guidelines. The applicability of this framework was
instantiated in the context of a manufacturing environment in
the HUMAN EU project (http://humanmanufacturing.eu) and
evaluation results, regarding usefulness and privacy awareness,
are presented by three studies. Although, this work is com-
pared with other existing frameworks, the evaluation is only
in academic context.

E. Xyreum: A High-Performance and Scalable Blockchain for
IIoT Security and Privacy

Sani et al. [12], proposed Xyreum, a Mutual Multi-factor
Authentication and Key Establishment (MMFA-KE) protocol
which uses a Time-based Zero-Knowledge Proof of Knowl-
edge (T-ZKPK) [25] scheme combined with authenticated
encryption. Xyreum is a blockchain-based scheme that aims
to provide privacy for the IIoT while overcoming high com-
putational complexity problems found in blockchains, by the
use of lightweight cryptographic mechanisms. It also addresses
security concerns, such as latency challenges, which are con-
sidered inappropriate for the IIoT environment.

Node registration relies on Pedersen commitments [26],
which supports homomorphic operations and can provide
perfect hiding of real message with the same trapdoor. Xyreum
authenticates nodes and derives session keys based on T-
ZKPK. The T-ZKPK usage mitigates eclipse attacks where
proof of work (PoW) and proof of stake (PoS) are vulnerable.
Transactions are recorded on a local blockchain, which is
managed by a master node, while participating nodes can
access it for verification purposes. Xyreum allows the use
of multiple such local blockchains in a distributed system,
each with its own master node. Figure 3 depicts the block and
transaction structures in a local blockchain. Nodes’ privacy is
preserved by the disclosure only of the transaction type only
or transactions summary information.

The authors also provide an informal security and privacy
analysis and give information on how to use their scheme

A. IIoT Nodes

There are three different types of nodes: i) Basic nodes,

which send and receive transactions, but neither manage nor

store transactions; ii) Master nodes, which act as managers that

manage and store transactions; and iii) Edge server, which only

provides system bootstrapping that initializes all transactions.

The basic nodes can be regarded as resource-constrained

devices without public and private keys, while the master

nodes are devices equipped with adequate computational and

storage resources and have unique public and private keys

for digital signatures. For example, a meter data management

system and sensors in a smart grid can be regarded as master

node and basic nodes, respectively. We note that since the main

purpose of the edge server in this paper is to register the first

master node, we consider the basic nodes and master nodes

as the main IIoT nodes.

B. Local Blockchain

A local blockchain is used to keep track and record all

transactions, which are chained together and stored in blocks.

It is managed by a master node and can be accessed by

all nodes for data and transaction verification purposes. A

distributed system can include multiple local blockchains,

each with its own manager node. Each block in the local

blockchain as shown in Figure 1 consists of the following

data elements and data structures: i) The previous hash of a

block, denoted as A, representing the hash that chains a block

to its predecessor. ii) The index, denoted as B, representing

the position of the current block on the local blockchain; iii) A

timestamp, denoted as C, indicating the time when the block

was generated ; iv) A counter, denoted as D, representing the

number of transactions in a block; and v) Transaction set,

denoted as E, representing all the transactions in a block.

Each transaction is described by a set of information: i) Trans-

action Type representing the kind of transaction carried out; ii)

On-chain transaction data, td, recording the transaction details

that are only processed and stored in the local blockchain by

the master nodes; and iii) Hash of on-chain transaction data,

Hash(td), recording the message digest of transaction details,

such as transaction random values and transaction type or

summary information inside of the local blockchain, where

Hash(.) is a 160 bits SHA-1 cryptographic hash function

algorithm.

As shown in Figure 1, the master node collects transactions

into Block 1. Once the block is full, i.e., the size of data in

the block reaches 1MB, the hash of the block is appended to

Block 2. Unlike Bitcoin, where a mining process, i.e., PoW,

is required to append a block to the blockchain, our scheme

eliminates PoW by using Hash(.) for appending blocks.

C. IIoT Transactions

To support IIoT security and privacy, we establish a set

of transactions that form our scheme. These transactions

include register transaction (RT ), MMFA-KE transaction

(MKT ), request transaction (RQT ), store transaction (ST ),
reply transaction (RPT ), and revocation transaction (RV T ).

Local Blockchain

Transaction Structure:
Hash of On-Chain 

Transaction Data; Transaction 
Type; On-Chain Transaction 

Data

Block Structure:
Previous Hash (A); Index 

(B); Timestamp (C); 
Number of transactions 
(D); Transactions (E)

Block 1

A B C D E

Block 2

A B C D E

Transactions

Master Node

Fig. 1. Local Blockchain in Xyreum.

Lightweight cryptographic algorithms, such as the SHA-1

algorithm, represent the consensus algorithms used by the

master nodes for verifying transactions. Note that we use SHA-

1 algorithm because transactions in IIoT occur within a short

time (see Section VI) and a malicious master node requires

cost and time to break the algorithm. Hence, the window for

any collision attack on the algorithm is negligible. Besides, it

is not possible for malicious master nodes to alter any data

in the blocks as changes of the on-chain transaction data in a

block would require changing its hash, which is irreversible.

To reach a consensus among master nodes, the on-chain

transaction data broadcast to the master nodes at the end of a

transaction is verified using cryptographic algorithms. Every

master node agrees to store the broadcast transactions in its

local blockchain if the verification succeeds. We assume that

if the verification succeeds, consensus has been reached with

overwhelming probability. The details about the transactions

are as follows.

1) Register Transaction: A register transaction RT is gen-

erated by a node to initiate a registration request and obtain

a digitally signed ID from a genuine master node, which

is a registered node in IIoT. To verify that the master node

is genuine, the node executing the registration can use any

local blockchain to check that the identity of the master node

exists and there is no revocation information related to the

identity. Once an ID is obtained by the node with the support

of Pedersen commitment, such node becomes a genuine node

in IIoT. We note that a node can initiate an RT as long as

there is a genuine master node.

Let M1 be a genuine master node. Let S be a basic node

with random secrets xS , rS ∈ Zq of 80 bits each, optional

information info of 64 bits, and pre-shared key value PVS

of 80 bits. Then, a register transaction RT is expressed

as ((xS , rS), info, PVS), which is of 304 bits. Upon the

successful execution of RT , S is assigned a digitally signed

identity IDS . The protocol implementing RT is given in

Section IV-A.

2) Mutual Multi-Factor Authentication and Key Establish-
ment Transaction: An MMFA-KE transaction MKT is gen-

erated by a genuine node to initiate an MMFA-KE request.

Let M1 be a genuine master node with a digitally signed

1922

Fig. 3. Xyreum’s local blockchain [12].

to strengthen security and privacy of the REMME proto-
col (https://remme.io), a blockchain-based security protocol,
which they use as a case study. The experimental results reveal
that Xyreum has low computational complexity compared to
existing relevant schemes and, in terms of latency, it meets the
required IIoT latency target.

F. DeepPAR and DeepDPA: Privacy Preserving and Asyn-
chronous Deep Learning for IIoT

Zhang et al. [13] address the privacy concerns raised
when utilising distributed datasets in IIoT in federated deep
learning, by proposing two privacy-preserving mechanisms
called DeepPAR (privacy-preserving and asynchronous deep
learning via re-encryption) and DeepDPA (dynamic privacy-
preserving and asynchronous deep learning). The aim is to
protect participating users’ privacy so that any personal data
provided for deep learning will not be leaked to unauthorised
parties.

DeepPAR (Figure 4) and DeepDPA (Figure 5) are based
on proxy re-encryption and group dynamic key management,
respectively. In DeepPAR, a proxy is responsible for re-
encrypting ciphertexts provided by gradients in the deep learn-
ing network, from their different secret keys into ciphertexts
encrypted using the same key.

The systems also provide forward secrecy for new partici-
pants in a learning group, who will not be able to have access
to model parameters prior to joining, and backward secrecy for
participants that leave the group, so that they won’t be able
to have access to model’s parameters after leaving the group.
In such dynamic environments, DeepDPA provides backward
secrecy in a lightweight manner, by the use of group key
management. Finally, the authors provide an informal security
analysis for their schemes and also the results of a performance
evaluation.

G. Blockchain and Federated Learning for Privacy-Preserved
Data Sharing in IIoT (BFL-PPDS)

Lu et al. proposed a differentially private multiparty data
sharing model for machine learning purposes in IIoT applica-
tions, that is based on permissioned blockchain [14]. In their
approach, the actual raw data is not directly shared among the



Fig. 4. DeepPAR system [13].

Fig. 5. DeepDPA system [13].

parties but used for building data models based on federated
learning algorithms. In this way, the privacy concerns of data
usage are addressed in the learning phase of algorithms via
distributed training locally in the parties.

Additionally, the authors present a blockchain-based archi-
tecture that allows collaborative data sharing over the multiple
parties located distributively in order to reduce data leakage
risks. This decentralised architecture continues to support data
owners to keep the control of their data and to provide selec-
tively access to it. An overview of BFL-PPDS architecture is
presented in Figure 6.

In order to enrich further the provided privacy, differential
privacy methods [27] are integrated into federated learning
by adding appropriate noise in the local raw data. Also, the
proposed approach gives an informal security analysis and
is evaluated for its effectiveness in two real-world datasets
for data categorisation. The results show that the increase

Fig. 6. Architecture of BFL-PPDS [14].

Fig. 7. Architecture of BIoE model [15].

in data providers has little effect on the accuracy, while the
running time is obviously increasing. Nevertheless, the authors
do not provide experiments with any custom or real blockchain
infrastructure.

H. Differential Privacy-Based Blockchain for IIoT (BIoE)

BIoE model, introduced by Gai et al. [15], is a privacy-
preserving scheme for implementing edge computing in IIoT
utilising blockchain technology for task allocations. The archi-
tecture of the proposed approach is shown in Figure 7. This
architecture provides a traceable mechanism for solving the
task allocation problem in edge computing using features of
blockchain technology. According to the authors, the proposed
model is designed to support a controllable and scalable IIoT
system while considering limitations, such as energy cost,
apart from privacy preservation.

The required privacy is achieved using a differential privacy
approach, by which noise is artificially added to those data
stored in the blockchain, in order to prevent data mining-based
attacks. Also, the authors provides an informal security anal-
ysis of their scheme. Experimental results are also provided,
using Ethereum as a blockchain infrastructure, to evaluate the
feasibility and the performance of the proposed BIoE model.

I. Towards a GDPR Compliant Way to Secure European Cross
Border Healthcare Industry 4.0 (HI 4.0)

Larrucea et al. [16] proposed a Healthcare Industry 4.0
(HI 4.0) architectural model (Figure 8) that provides GPDR



Fig. 8. Architectural model of HI 4.0 [16].

compliance for exchanging sensitive eHearth data cross dif-
ferent countries in Europe. This model extends the Reference
Architectural Model Industry 4.0 (RAMI 4.0) [3] by adding a
consent management process to satisfy GDPR requirements,
a data sensitivity identification process, data hiding tools and
OpenNCP [28], as a communication platform.

Additionally, the authors present a case study to illustrate
the usage of the proposed HI 4.0 reference model. This case
study aimed to determine the sensitive data of an individual,
considering the GDPR, and integrate the consent management
and data hiding tools, while giving users control over their
personal data.

J. Designing a Privacy Dashboard for a Smart Manufacturing
Environment (PDASH)

In [17], the authors describe the initial requirements and de-
sign process followed to develop a privacy dashboard for smart
manufacturing environments. The aim of privacy dashboards
is to capture what personal data is stored by a system and give
the option to the users of the same system to manage what
personal data is communicated to third parties. The design of
privacy dashboard is based on a privacy by design approach,
as promoted by the GDPR, following the guidelines of HTPF
framework [11] proposed previously by the same authors in
HUMAN EU project. As mentioned, currently, the design of
the dashboard is in an early stage and requires to implement
and compare it with other existing approaches.

K. Privacy-Preserved Data Sharing towards Multiple Parties
in IIoT (PPDSMP)

Zheng and Cai [18] propose a framework for providing
data consumers the ability to share their data in a privacy-
preserving manner. The authors consider three main entities
in their framework. The workers, or data providers (DPs),
who (generate contents about different applications) share their
data for profit with data consumers (DCs), aka subscribers,
and the service providers (SPs), who coordinate data sharing
among workers and subscribers. The proposed scheme tries to
achieve a balance among user’s privacy, profits of participating
entities and data utilisation. The budgets provided by the data
consumers are taken into account in the data sharing strategy.

The authors consider two scenarios and propose two algo-
rithms. In the first scenario the DC has access to the same
information as the SP, as the SP is only involved in fusing
data received by DPs and making them available to DCs,
and does not have access to the production system. A sharing
strategy defines the scale of shared contents and the accuracy
of the data provided by DPs. Privacy is preserved by the use
of typical randomised responses.

In the other scenario, the service provider processes the
information it gets from the data providers, and conceals some
private business information, prior to making it available to
subscribers. The SP, prior to sharing the data with the DCs,
proceeds with the data perturbation, which is implemented
with a second random response on the collected data, based
on an agreed privacy factor.

The authors evaluate their work and measure the perfor-
mance of the proposed algorithms using real Freight and Taxi
datasets.

L. Layered Data Aggregation with Efficient Privacy Preserva-
tion for Fog-assisted IIoT (LDA-EPP)

LDA-EPP, as proposed by Li et al. in [19], is a layered
data aggregation scheme with efficient privacy preservation in
fog-assisted IIoT. The scheme comprises three layers (sensing
layer, fog layer, and cloud layer) and mainly includes five
entities (IIoT devices, fog nodes, industrial cloud, trusted man-
agement authority, and users). Figure 9 depicts the network
architecture of the proposed solution. LDA-EPP preserves data
privacy, confidentiality, and integrity, by employing a modified
homomorphic encryption of Paillier cryptosystem, a simple
hash chain mechanism and the Chinese Remainder theorem
(CRT) for layered data aggregation. More specifically, the
privacy of individual device is protected against the semi-
trusted fog nodes and the cloud. Utilising the CRT, the cloud
in the proposed solution can provide fine-grained services by
acquiring aggregation data from smaller subareas.

Furthermore, the authors provide an informal security anal-
ysis of the proposed LDA-EPP scheme using honest-but-
curious entities (fog nodes and industrial cloud) and focusing
on the security and privacy preservation of data generation
and transmission processes. Experimental results demonstrate
advantages of the proposed scheme, over others, in terms of
computation and communications costs.

IV. ANONYMOUS ACCESS TO IIOT DATA AND SERVICES

This section analyses schemes that have been proposed to
address a different aspect of anonymity in IIoT, which is
related to the privacy-preserving authentication for access to
IIoT data and services. An example of a typical authentication
model considered in these protocols is depicted in Figure 10.

A. A Robust ECC-Based Provable Secure Authentication Pro-
tocol with Privacy Preserving for IIoT (P2SAP)

Li et al. [20] propose another biometrics-based authentica-
tion protocol for access to wireless-sensor networks in IIoT
environment. The scheme is based on the use of elliptic-curve



Fig. 9. Network architecture of LDA-EPP [19].

Fig. 10. IIoT Authentication Model [21].

cryptography (ECC) for the bi-directional authentication and
key establishment that takes place among a user, the sensor
gateway, and a sensor node.

P2SAP utilises the sensor gateway for the user’s registration,
while anonymity is preserved through the use of dynamic
identities, instead of real identities, and untraceability. Sensor
nodes’ anonymity is also preserved, by not transmitting their
identities via public channels. They are however identifiable
by the gateway.

The authors provide a formal proof for their protocol, make
a properties comparison analysis with other related protocols
and provide the results of a performance comparison and
benchmarks on a simulation conducted on NS-3.

B. Anonymous Lightweight Chaotic Map-Based Authenticated
Key Agreement Protocol for IIoT (ALCMAKA)

The protocol proposed by Srinivas et al. [21], facilitates
anonymous authorised access to nodes’ services. The model

utilised by the authors is depicted in Figure 10. The proposed
protocol is a three-factor authentication and key establishment
protocol which is based on the use of a smart card, biometrics,
and a user password. Similarly to the previous scheme, a gate-
way, acts as a trusted entity and utilised for user and smart IoT
device registration and facilitates their mutual authentication.
The established secret session key is shared between the user
and the smart IoT device. The protocol also provides provides
user anonymity and untraceability.

The authors perform an informal and a formal security
analysis based on Real-or-Random (RoR) oracle model and
AVISPA (Automated Validation of Internet Security Protocols
and Applications) tool, a comparison with other protocols, and
provide the results of a benchmarking on a simulation on NS-
2.

C. Biometrics-Based Privacy-Preserving User Authentication
Scheme for Cloud-Based IIoT Deployment (BP2UA)

BP2UA [22] is a two-factor authentication scheme which is
based on the use of smart cards and biometrics to authenticate
users prior to providing them access to personal data on
cloud-based IIoT applications. The proposed method facilitates
mutual authentication and key establishment between a smart
device and a smart cardholder. This is accomplished with the
help of the device’s gateway (similarly to the P2SAP [20]),
with which the device register during an offline registration
phase. The use of pseudo-identities for the communicating par-
ties and the untraceability property of the proposed protocol,
provide the required user privacy. One of the main benefits
of BP2UA is that it only requires bitwise Exclusive-OR and
hash operations at the smart devices, which makes BP2UA a
lightweight solution.

The authors provide an informal and a formal security
analysis for the session key establishment method, using the
real-or-random model. They also demonstrate their method’s
resilience against passive and active attacks. However, Hussain
et al. [29] recently claimed that BP2UA is vulnerable to stolen
verifier, stolen smart device, and traceability attacks which
allow exposure of the session key. Moreover, it does not
provide perfect forward secrecy.

The authors also make a comparative analysis with other
similar schemes and provide some evaluation and performance
results on a simulation on NS-2 (Network Simulator 2).

D. Hash-Based Conditional Privacy Preserving Authentica-
tion and Key Exchange Protocol Suitable for IIoT (HCPPA-
KE)

Paliwal [23] proposed a conditional privacy-preserving au-
thentication and key exchange protocol. The proposed work is
considered lightweight as it is mainly based on the use of hash
functions. Similarly to the previously mentioned protocols,
HCPPA-KE utilises the sensors gateway to perform the neces-
sary user and sensor registration, authentication and key estab-
lishment. Anonymity is preserved with the use of pseudonyms
which are updated in every session (the pseudonym for each
session is provided with the messages of the previous session).



The protocol also provides perfect forward secrecy as the
session keys depend on nonces and timestamps which are used
only for a specific session.

The author provides an informal security analysis as well
as a formal one based on AVISPA and Real-or-Random
(RoR) oracle model simulations. The paper also provides
some performance analysis results which are compared to
similar works. The authors cost of the cryptographic operations
is based on previous works. The author also performs a
cryptanalysis on the Li et al. [20] proposed protocol and proves
that the scheme is vulnerable to Denial-of-Service attacks and
impersonation attacks.

V. CONCLUSIONS

In this review paper, we presented privacy-preserving so-
lutions in the IIoT that try to address various privacy issues,
such as anonymity and personal data processing, analysing
those that were especially proposed for the IIoT and con-
sequently address the peculiarities of the modern industrial
environment. The conducted analysis of these solutions drove
us to categorise them as, (1) those that focus on applying
privacy-protection on data generated and managed in the IIoT,
and (2) those that protect the privacy of the entity that accesses
this data. Additionally, we compared them with regard to the
privacy-preserving provided service, the utilised technologies
in general, the utilised underlying privacy mechanisms, the
presentation of a formal or informal security analysis, and the
implementation level. The results of this review reveal that
the privacy-enhancing technologies (PETs) is on the rise in
the IIoT domain and we encourage researchers to continue
their effort proposing even more advanced and innovative
approaches.
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