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Abstract: Detecting anomalies in data streams from smart communication environments is a chal-
lenging problem that can benefit from novel learning techniques. The Attention Mechanism is a very
promising architecture for addressing this problem. It allows the model to focus on specific parts
of the input data when processing it, improving its ability to understand the meaning of specific
parts in context and make more accurate predictions. This paper presents a Cross-Modal Dynamic
Attention Neural Architecture (CM-DANA) by expanding on state-of-the-art techniques. It is a novel
dynamic attention mechanism that can be trained end-to-end along with the rest of the model using
multimodal data streams. The attention mechanism calculates attention weights for each position in
the input data based on the model’s current state by a hybrid method called Cross-Modal Attention.
Specifically, the proposed model uses multimodal learning tasks where the input data comes from
different cyber modalities. It combines the relevant input data using these weights to produce an
attention vector in order to detect suspicious abnormal behavior. We demonstrate the effectiveness of
our approach on a cyber security anomalies detection task using multiple data streams from smart
communication environments.

Keywords: cross-modal learning tasks; dynamic attention mechanism; neural architecture; anomaly
detection; data streams; smart communication environments

1. Introduction

Detecting anomalies in data streams [1] from smart communication environments
is a critical problem that has significant implications for various applications, including
cyber security [2], monitoring cyber-physical systems [3], and controlling the industrial
ecosystem [4]. The vast amount of data generated in these environments makes it difficult
to detect abnormal behavior in real-time, which can lead to significant damages and security
breaches [5]. Anomaly detection in these data streams is challenging due to the volume and
complexity of the data and the need for real-time detection to prevent potential damages
or security breaches [6,7]. Traditional methods for anomaly detection in data streams rely
on statistical techniques or rule-based systems, which may not be effective in identifying
subtle or unknown anomalies [8]. Machine learning approaches, particularly deep learning
methods, have shown promise in addressing this challenge by enabling automated and
accurate detection of anomalies in complex data streams [9].

One of the key advantages of deep learning methods for anomaly detection is the
ability to learn relevant features from the input data without relying on pre-defined rules
or assumptions. Attention mechanisms, in particular, have emerged as a powerful tool
for capturing relevant input data features and improving neural network performance in
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various applications [2]. Recent research has focused on developing novel deep-learning
architectures that effectively leverage attention mechanisms to detect anomalies in data
streams from smart communication environments. These architectures often use simple
attention mechanisms that can adapt to changes in the input data over time and can
be trained end-to-end using data streams to capture the complex interactions between
sophisticated processes [10,11].

Simple attention involves computing a fixed set of attention weights for the input
data learned during training based on the task-specific objective function. The network
then uses these fixed attention weights to weigh the input features in subsequent neural
network layers. These simple attention mechanisms have become a powerful tool for
capturing relevant input data features and improving neural network performance in
various applications [12].

On the other hand, dynamic attention allows the network to adjust the attention
weights at each time step to give more or less importance to different parts of the input
sequence depending on their relevance to the task. Dynamic attention mechanisms can be
useful in applications where the types and frequencies of anomalies may change over time,
allowing the model to adapt to changes in the input data [13].

Both simple and dynamic attention mechanisms have strengths and weaknesses
depending on the specific application and data. Simple attention is more straightforward
and can be effective in many cases. In contrast, dynamic attention can improve the model’s
ability to adapt to changes in the input data over time. The appropriate attention mechanism
type depends on the input data’s nature and task [14,15].

This paper presents a novel and holistic neural architecture called CM-DANA for
detecting anomalies in data streams from smart communication environments. The model
is based on a hybrid approach that combines attention mechanisms and multimodal
learning techniques to capture the complex interactions between different modalities of
data effectively. The CM-DANA model uses a dynamic attention mechanism that calculates
attention weights for each position in the input data based on the model’s current state. This
attention mechanism is a location-based attention mechanism that uses the position of the
input features in the sequence of real-time data streams to calculate the attention weights.
The more sophisticated character of the proposed model is that it is trained end-to-end
using multimodal data streams. This allows the model to attend to different features in
different modalities based on the model’s current state and detect suspicious abnormal
behavior by combining the relevant input data from different modalities using adaptive
attention weights.

The motivation for the CM-DANA model is to improve the accuracy and efficiency of
anomaly detection in data streams from smart communication environments by effectively
capturing relevant features and suppressing noisy or irrelevant features. The use of dy-
namic attention and multimodal learning techniques allows the model to attend to different
features in different modalities based on the model’s current state, which can improve its
ability to detect suspicious abnormal behavior in real-time. Overall, the motivation for the
paper is to develop a novel deep-learning architecture that can effectively detect anoma-
lies in data streams from smart communication environments. By leveraging attention
mechanisms and multimodal learning techniques, the CM-DANA model, presented for the
first time in the literature, aims to be a promising approach to improving the accuracy and
efficiency of anomaly detection in various applications.

2. Literature Review

Anomaly detection in data streams has been an active research area due to the increas-
ing volume and complexity of data generated by IoT devices and smart environments [2].
Traditional anomaly detection methods, such as statistical techniques [5], clustering [16],
and classification [8], have been applied to data streams [6], with varying degrees of success.
However, they often struggle to adapt to the dynamic nature of data streams, which may
have changing distributions and evolving patterns [5]. For example, during a timed event,
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the traffic pattern can change dramatically, potentially causing statistical methods that rely
on historical data to label the surge in traffic as an anomaly due to the shift in statistical
properties like mean and variance [17]. In addition, the traditional clustering methods
might not recognize the sudden appearance of a new cluster as an anomaly, leading to de-
layed detection, or traditional classifiers might struggle to identify novel patterns that were
not present in the training data [6]. In summary, traditional anomaly detection methods
have limitations that become more pronounced in dynamic data streams with changing
distributions and evolving patterns. The technical challenges of concept drift [17], high-
dimensional data [7], computational efficiency [18], and feature engineering [19] contribute
to their struggles in adapting to these scenarios. This has prompted the exploration of more
advanced techniques, including deep learning-based approaches, which have shown better
adaptability and scalability in handling the dynamic nature of data streams.

Recently, deep learning-based techniques [2] have been proposed for data stream
anomaly detection, including autoencoders [20], recurrent neural networks (RNNs) [21],
and convolutional neural networks (CNNs) [22]. These methods have demonstrated
better adaptability and scalability compared to traditional methods, but they still face
challenges in dealing with heterogeneous data types and efficiently focusing on relevant
features. Specifically, deep learning techniques face significant challenges in dealing with
heterogeneous data types and efficiently focusing on relevant features [2]. These challenges
include handling diverse data types, ensuring feature relevance and selection, addressing
data imbalance, and interpreting deep models [23]. Heterogeneous data types, such as
numerical, categorical, text, image, and time series data, can be challenging to integrate
and process effectively [7,24]. Researchers are exploring techniques to handle multiple data
types [25], such as specialized network architectures [26] or converting different data types
into a common feature space [27]. Feature engineering and selection techniques aim to
identify the most informative features, while data imbalance can lead to models favoring
the majority class and performing poorly in anomaly detection [28]. Interpretable models
are crucial to understanding the underlying patterns learned by deep learning models, such
as in manufacturing processes where engineers need to know which factors contributed
to anomaly detection [29]. Researchers are developing techniques to explain deep model
decisions, such as attention mechanisms, feature attribution methods, and gradient-based
visualizations, to provide insights into which features were influential in making anomaly
predictions [30].

Cross-modal learning [31] refers to the process of learning shared representations from
multiple data modalities, such as images, text, and audio. It has shown great potential in var-
ious applications, including multimedia retrieval [32], recommendation systems [33], and
multimodal sentiment analysis [25]. Several methods have been proposed for cross-modal
learning, including deep neural networks [34], matrix factorization [35], and probabilistic
graphical models [36]. Recently, cross-modal learning has been integrated with attention
mechanisms to improve the interpretability and performance of the learned representa-
tions [37–39]. However, the application of cross-modal learning to anomaly detection in
data streams from smart communication environments is still relatively unexplored. This
approach offers several benefits, but also presents challenges, such as developing effective
fusion strategies, addressing domain-specific issues, dealing with varying data modalities,
and managing computational complexity [36]. Additionally, data privacy and ethics are
critical concerns in smart communication environments, and researchers must address
these concerns when designing cross-modal anomaly detection systems [25].

Attention mechanisms have been introduced in neural networks to help the model
focus on the most relevant parts of the input data for a specific task [12]. The concept of
attention was initially proposed in the context of Natural Language Processing (NLP) [15]
and has since been extended to various domains, such as computer vision [14] and speech
recognition [40]. Different types of attention mechanisms have been proposed, including
self-attention [41], local attention [42], and global attention [43]. Attention mechanisms
have also been combined with other neural network architectures, such as RNNs [44],
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CNNs [45], and Transformer models [46], to improve their performance and interpretability.
The application of attention mechanisms in anomaly detection has shown promising results,
particularly in terms of handling large-scale and high-dimensional data [27]. However,
incorporating dynamic attention mechanisms into cross-modal learning for anomaly de-
tection in data streams remains a challenge. Specifically, incorporating dynamic attention
mechanisms into cross-modal learning for anomaly detection in data streams requires
a careful balance between adaptability, efficiency, interpretability, and performance [37].
Researchers need to devise novel approaches that address these challenges and tailor dy-
namic attention mechanisms to the specific requirements of dynamic data streams and
multi-modal data fusion [14]. Despite the challenges, successfully implementing dynamic
attention can significantly enhance the accuracy and robustness of anomaly detection
systems in complex and rapidly evolving environments [12].

In summary, research gaps from the literature review in anomaly detection in dynamic
environments include adapting traditional methods to handle changing distributions and
patterns, integrating heterogeneous data types, improving the interpretability of deep
models, exploring cross-modal anomaly detection, incorporating dynamic attention mecha-
nisms, and addressing privacy and ethics concerns. These areas highlight opportunities
for innovation and exploration in anomaly detection in smart communication environ-
ments, particularly in integrating heterogeneous data types, enhancing interpretability, and
effectively utilizing dynamic attention mechanisms and cross-modal learning techniques.

By addressing these gaps, the proposed approach proposes a more effective anomaly
detection method that can handle diverse data types, improve interpretability, and main-
tain privacy and ethics in cross-modal anomaly detection systems. Specifically, this paper
presents a novel CM-DANA for detecting anomalies in data streams generated from smart
communication environments. The proposed architecture leverages the advantages of
cross-modal learning and dynamic attention mechanisms to effectively analyze heteroge-
neous data streams from different cyber modalities and identify anomalous patterns in
real-time. Recent advancements inspire this approach in cross-modal learning and attention
mechanisms in neural networks. Cross-modal learning has shown its potential in various
applications where data comes from multiple sources or modalities, while attention mech-
anisms have been successful in helping models focus on relevant parts of input data for
specific tasks. By combining these two concepts, our proposed approach not only improves
the overall performance of anomaly detection but also enhances the interpretability and
adaptability of the model in handling diverse and evolving data patterns.

The proposed method addresses research gaps in anomaly detection in dynamic data
streams from smart communication environments by enhancing traditional methods, in-
tegrating heterogeneous data types, enhancing interpretable deep models, incorporating
cross-modal learning, and incorporating dynamic attention mechanisms. These contri-
butions can help develop more accurate, adaptive, and interpretable anomaly detection
systems that can effectively operate in complex and rapidly evolving scenarios. By incor-
porating concepts from both the dynamic attention and anomaly detection domain, the
proposed CM-DANA technique ensures that data from different modalities are integrated
in an accurate way. By focusing on these contributions, the proposed approach makes
significant strides in advancing the field of anomaly detection in dynamic data streams
from smart communication environments.

3. Materials and Methods

The proposed CM-DANA consists of 4 main modules: the Feature Extraction Mod-
ule, Cross-modal Learning Module, the Dynamic Attention Module, and the Anomaly
Detection Module. The architecture is designed to process and analyze heterogeneous
data streams from different cyber modalities, such as network traffic, log files, and user
behavior patterns. The Feature Extraction Module extracts features from each modality;
the Cross-modal Learning Module learns shared representations. The Dynamic Attention
Module then computes attention weights to emphasize the most relevant features, forming
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an attention vector. Finally, the Anomaly Detection Module uses the attention vector to
identify anomalous patterns.

An efficient and novel combination of intelligent algorithms is used in the CM-DANA
method. Specifically, it is a combination of Convolutional Neural Networks (CNNs) for
feature extraction, Transformers for cross-modal learning, Gated Recurrent Units (GRUs)
for dynamic attention, and Theil-Sen Regressor as an anomaly detector. This combina-
tion leverages the strengths of each algorithm to enhance predictability performance. A
high-level representation of the CM-DANA methodology is presented in the following
Algorithm 1:

Algorithm 1 Pseudocode of CM-DANA methodology

# Feature Extraction Module
def feature_extraction(input_data):

# Input Data Preparation
preprocessed_data = preprocess(input_data)
# Convolutional Layers
convolution_output = apply_convolutional_layers(preprocessed_data)
# Activation Functions
activated_output = apply_activation_functions(convolution_output)
# Pooling Layers
pooled_output = apply_pooling_layers(activated_output)
# Flattening
flattened_output = flatten(pooled_output)
# Fully Connected Layers
features = apply_fully_connected_layers(flattened_output)
return features

# Cross-modal Learning Module
def cross_modal_learning(modalities):

shared_representations = []
for modality in modalities:

features = feature_extraction(modality)
shared_representations.append(features)

# Process shared representations using Transformers
processed_representations = process_with_transformers(shared_representations)
return processed_representations

# Dynamic Attention Module
def dynamic_attention(shared_representations):

attention_vector = []
for representation in shared_representations:

attention_weights = compute_attention_weights(representation)
attention_vector.append(weighted_sum(representation, attention_weights))

return attention_vector
# Anomaly Detection Module
def anomaly_detection(attention_vector):

# Use TheilSenRegressor for linear regression
model = TheilSenRegressor()
model.fit(attention_vector)
# Calculate residuals
predicted_values = model.predict(attention_vector)
residuals = calculate_residuals(attention_vector, predicted_values)
# Set dynamic threshold
threshold = set_dynamic_threshold(residuals)
# Identify anomalies
anomalies = identify_anomalies(residuals, threshold)
return anomalies

# CM-DANA Methodology
def CM_DANA(input_modalities):
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Algorithm 1 Cont.

# Feature Extraction Module
extracted_features = feature_extraction(input_modalities)
# Cross-modal Learning Module
shared_representations = cross_modal_learning(extracted_features)
# Dynamic Attention Module
attention_vector = dynamic_attention(shared_representations)
# Anomaly Detection Module
anomalies = anomaly_detection(attention_vector)
return anomalies

The end-to-end training approach of the CM-DANA model ensures that the model
learns to identify and capture the complex interactions between different modalities of
data. This leads to more accurate anomaly detection in smart communication environ-
ments where data streams from multiple sources can provide valuable information about
anomalies and potential threats.

It must be noted that the 4 modules of the proposed methodology introduce signifi-
cant innovative aspects that collectively enhance the accuracy and efficiency of anomaly
detection in the proposed CM-DANA model. Specifically, the use of CNNs for feature
extraction is an innovation that tailors the architecture to the nuances of cybersecurity data.
While CNNs are commonly used for image analysis, adapting them to cybersecurity data
highlights a key innovation. By processing diverse modalities like network traffic, log files,
and behavior patterns with CNNs, the architecture acknowledges the spatial features that
hold significance in cybersecurity contexts. This customized feature extraction enhances
anomaly detection’s precision in identifying spatial irregularities hidden within complex
data patterns.

In addition, the integration of Transformers in the Cross-modal Learning Module is
an innovative approach to capturing cross-modal interactions and dependencies. Trans-
formers were originally designed for sequence-to-sequence tasks but adapting them for
cross-modal learning is a novel application. By processing different modalities with dedi-
cated subnetworks and then aggregating shared representations using Transformers, the
architecture harnesses the strength of Transformers in capturing contextual and long-range
relationships within different types of data. This integration contributes to the architecture’s
ability to learn complex patterns across modalities.

Also, the Dynamic Attention Module introduces innovation by employing GRUs to
compute attention weights. While attention mechanisms are common in machine learning,
using GRUs for dynamic attention reflects an innovative application. GRUs, being recurrent
neural network components, adaptively adjust attention weights based on the current state
and input sequence. This dynamic attention mechanism helps the model focus on the
most relevant features at each time step, allowing it to adapt to changing data patterns and
improving anomaly detection accuracy.

Moreover, the application of the Theil-Sen Regressor for anomaly detection is an
innovative choice. While the Theil-Sen Regressor is primarily used for linear regression,
adapting it as an anomaly detection algorithm shows innovation. By fitting a linear model
to the attention vector and calculating residuals, the architecture detects anomalies in a
manner that accounts for potential outliers and noise, contributing to robust and accurate
anomaly identification.

Collectively, the innovation of the CM-DANA methodology lies in its thoughtful
combination of these components and algorithms to address the challenges of detecting
anomalies across multiple cyber modalities. The details about the specific components are
presented in the following subsections.

3.1. Feature Extraction Module

The feature extraction module is responsible for processing the input data from dif-
ferent modalities and extracting relevant features that capture the characteristics of the
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data. It plays a crucial role in representing the data in a format that the subsequent mod-
ules can effectively analyze. The features extracted from each subnetwork are then passed
through a fusion layer, which learns to combine the multimodal features into a single shared
representation. This representation is used as the input for the subsequent cross-modal
learning module.

It must be noted that the input processing layer of the features extraction module takes
in data streams from multiple modalities, such as data acquisition systems, sensors, or
web services. CNNs are particularly effective at extracting spatial features from input data,
making them suitable for processing certain modalities. Specifically, CNNs architecture
(Figure 1) have shown excellent performance in extracting spatial features from data,
making them suitable for processing data streams from multiple cybersecurity modalities.
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The integration of Convolutional Neural Networks (CNNs) for the purpose of feature
extraction within the CM-DANA architecture involves a series of sequential procedures.
Specifically, commencing with Step 1, the preparation of input data is undertaken. Data
originating from diverse modalities is subjected to preprocessing procedures to conform
to formats conducive to CNN-compatible representations. In Step 2, the architecture
employs a succession of convolutional layers to process the input data. Within these layers,
convolutions are executed using adaptable filters, which effectively capture spatial features
across varying levels of abstraction. The parameter adaptability, encompassing filter depth
and size, assumes significance in ensuring proficient feature extraction that corresponds to
the intricacy inherent in the data.

Following each convolutional layer, as elucidated in Step 3, non-linear activation
functions, such as the Rectified Linear Unit (ReLU), are introduced. This introduction of
non-linearity serves the purpose of capturing intricate patterns present within the data.
Strategic insertion of pooling layers, as delineated in Step 4, contributes to the overall
architecture. These pooling layers, which encompass MaxPooling and AveragePooling,
serve the dual role of diminishing computational complexity and preserving pertinent
features. The outcome of these layers is a downsampling of feature maps, thereby fostering
spatial invariance.

Step 5 entails the flattening of output feature maps that are generated by the convolu-
tional layers. This flattening operation transforms the feature maps into one-dimensional
vectors, thereby preparing them for subsequent stages of processing. Transitioning to
Step 6, the flattened features are directed into fully connected layers. The role of these
layers is to enhance the extracted features by capturing more complex relationships and
representations that exist at higher levels of abstraction. Finally, Step 7 culminates in the
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generation of a distinct output. The output stems from the fully connected layers and
serves as a unique representation of features. This representation, in essence, encapsulates
crucial spatial information inherent within the input data.

The innovation of CM-DANA becomes evident in its incorporation of CNNs tailored
for anomaly detection across smart communication environments. Specifically, the pro-
posed approach introduces a pioneering innovation that lies in the thoughtful integration
of CNNs module for feature extraction, specifically designed to address the challenges of
cybersecurity modalities by extracting spatial features that hold particular significance in
cybersecurity contexts. Unlike conventional anomaly detection approaches, which often
employ generic feature extractors, CM-DANA tailors its feature extraction to the nuances
of the data, enhancing its anomaly detection prowess.

CNNs are particularly adept at capturing spatial patterns within data, while the
proposed architecture leverages the inherent ability to learn hierarchies of features, enabling
them to uncover intricate relationships within the data streams. This feature amplifies the
model’s potential to detect anomalies hidden within complex data patterns in real-time.

The CM-DANA architecture’s uniqueness further emerges in its fusion of features
across modalities. Extracted features from distinct subnetworks are merged through a
fusion layer, creating a unified representation that encodes the combined knowledge of
different data streams. By integrating CNNs for feature extraction, CM-DANA elevates this
fusion process, as it now incorporates spatial insights that other architectures might over-
look. This enables the architecture to capture cross-modal interactions and dependencies
more effectively.

In addition, the incorporation of CNNs amplifies the architecture’s ability to capture
localized and global spatial features. As anomalies within smart communication environ-
ments often manifest as intricate spatial irregularities, the proposed model’s innovative
CNN-based feature extraction enhances its precision in pinpointing subtle anomalies that
might be missed by traditional methods. This leads to more accurate and efficient anomaly
detection in complex, evolving data streams.

Finally, it must be noted that the CNNs within the CM-DANA model do not operate
in isolation. They serve as integral components within the cross-modal learning module,
collaborating with other components to decipher complex interactions between data modal-
ities. By enriching the feature extraction step with CNNs, the model contributes to more
informative feature representations that empower subsequent modules in making more
accurate anomaly detection decisions.

By leveraging CNNs to extract features, the CM-DANA architecture stands out as
a promising method for capturing complex interactions between data modalities and
advancing anomaly detection capabilities.

3.2. Cross-Modal Learning Module

The cross-modal learning module is responsible for processing the input data from
multiple modalities and learning shared representations. Each modality is processed by
a dedicated subnetwork tailored to the specific data type. Transformers have proven
to be highly effective in modeling long-range dependencies and capturing contextual
information. In the cross-modal learning module, transformers are used to process data patterns.

An illustration of the transformer model’s core components where layers were nor-
malized after multiheaded attention is depicted in Figure 2 [47].

Transformers excel at learning representations from sequential data and can capture
the temporal relationships within cybersecurity modalities like log files, network traffic,
and behavior patterns.

The foundational constituents of a transformer architecture have been extensively
delineated in prior literature [12,47,48]. Firstly, the architecture inherently encompasses an
Encoder–Decoder Structure, manifesting as two distinctive modules: an encoder tasked
with assimilating the input sequence, and a decoder orchestrating the generation of the
corresponding output sequence.
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Secondly, a pivotal mechanism operative within this framework is the Self-Attention
Mechanism. This mechanism engenders the capacity for individual elements within the
input sequence to selectively attend to other constituent elements within the same sequence.
In effect, attention weights are computed, thereby endowing the model with the faculty to
emphasize pertinent informational elements during the input processing phase.

In tandem with this, the paradigm incorporates the Multi-Head Attention mechanism,
which entails the integration of multiple attention layers, colloquially referred to as “heads”.
This arrangement facilitates the discernment of disparate forms of interrelationships ex-
isting amongst the elements comprising the input sequence. Concatenation or amalga-
mation of the outputs stemming from these distinct heads affords a more exhaustive and
holistic representation.

Subsequently, following the application of the self-attention mechanism, the architec-
ture integrates Feed-Forward Neural Networks. These neural networks serve to further
process the representations that have been subjected to the self-attention mechanism, aug-
menting the model’s ability to capture intricate patterns within the data.

Furthermore, an intrinsic challenge pertaining to the transformer architecture per-
tains to its inability to inherently fathom sequential information. To circumvent this, the
framework incorporates Positional Encoding. By integrating positional encoding into the
input embeddings, the model gains access to crucial positional information. This aug-
mentation equips the transformer with the proficiency to effectively manage and interpret
sequential data.

The first sublayer obtains the decoder stack’s previous output, augments it with
positional information, then applies multi-head self-attention to it. While the encoder is
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meant to attend to all words in the input sequence regardless of their position, the decoder
is adjusted to only attend to the words that come before them. As a result, the prediction
for a word at position i can only be based on the known outputs for the words preceding
it in the sequence. This is accomplished in the multi-head attention mechanism (which
implements numerous, single attention functions simultaneously) by applying a mask to
the values obtained by the scaled multiplication of matrices Q and K.

Masking is accomplished by suppressing matrix values that would otherwise corre-
spond to illegal connections [49]:

mask
(

QKT
)
= mask




e11 e12 . . . e1n
e21 e22 . . . e2n

...
...

. . .
...

em1 em2 . . . emn


 =


e11 −∞ . . . −∞
e21 e22 . . . −∞

...
...

. . .
...

em1 em2 . . . emn


The second layer utilizes a multi-head self-attention technique identical to the one

used in the encoder’s first sublayer. On the decoder side, this multi-head mechanism takes
queries from the preceding decoder sublayer as well as keys and values from the encoder
output. This enables the decoder to process all of the words in the input sequence. Finally,
the third layer implements a fully linked feed-forward network, similar to the one used in
the encoder’s second sublayer.

3.3. Dynamic Attention

The dynamic attention module computes attention weights for the shared representa-
tion generated by the cross-modal learning module. It employs a self-attention mechanism
to assess the importance of each feature in the shared representation. The self-attention
mechanism calculates the relevance of each feature by measuring its interaction with other
features in the representation. These attention weights are then used to produce an attention
vector, which is a weighted sum of the shared representation features. The attention vector
captures the most relevant information across all modalities, emphasizing the features that
contribute the most to the anomaly detection task.

GRUs are employed in the dynamic attention module to compute attention weights
and generate the attention vector. GRUs are a type of recurrent neural network that can
capture temporal dependencies and adapt to changes over time. By using GRUs, the model
can dynamically adjust attention weights based on the current state and input sequence,
improving the model’s ability to focus on relevant features and to adapt to changes in the
input data over time. It calculates attention weights for each position in the input data
based on the model’s current state.

The attention mechanism is a location-based attention mechanism that uses the posi-
tion of the input features in the sequence of real-time data streams to calculate the attention
weights. The attention mechanism is a hybrid approach that combines content-based and
location-based attention. Content-based attention uses the input features to calculate the at-
tention weights. In contrast, location-based attention uses the position of the input features
in the sequence to calculate the attention weights. The attention weights are adaptive and
can be adjusted at each time step to give more or less importance to different parts of the
input sequence depending on their relevance to the task.

3.4. Anomaly Detection Module

The anomaly detection module of the CM-DANA model combines the relevant input
data from different modalities using the adaptive attention weights to detect suspicious
abnormal behavior. The Theil-Sen Regressor was used as an anomaly detection module in
the CM-DANA architecture. The Theil-Sen Regressor is a robust linear regression algorithm
that estimates the slope and intercept of a linear relationship between input features and
target variables. While it is primarily used for regression tasks, it can also be adapted for
anomaly detection by setting a threshold on the residuals used for outlier detection.
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Specifically, after the dynamic attention module obtains the attention vector, it serves as
the input to the anomaly detection module. The Theil-Sen Regressor fits a linear regression
model to the attention vector and estimates the slope and intercept of the linear relationship.
During the anomaly detection phase, it calculates the residuals by comparing the predicted
values from the Theil-Sen Regressor with the actual values of the attention vector. Finally,
a dynamic threshold on the residuals identifies instances where the deviation from the
predicted values is significant. Data instances with residuals above the threshold are
considered anomalous. Figure 3 is an example of how to fit a line through almost linear
data. The orange Theil-Sen Regressor outperforms the blue linear regressor.

1 

Figure 3. Theil-Sen Regressor.

4. Case Study: Application in Cybersecurity Anomaly Detection

To demonstrate how CM-DANA can identify advanced cybersecurity anomalies, we
present a case study in a Smart Communication Environment. This environment generates
data streams encompassing multiple modalities that can be utilized to detect security
breaches, including infiltration attempts, DDoS attacks, and malicious software prolifera-
tion. The case study involves structured, semi-structured, and unstructured data streams
that require sophisticated preprocessing and feature extraction techniques for accurate anal-
ysis. Intelligent models must handle temporal interdependencies and high-dimensional
data streams while processing large volumes of data in near real-time. Furthermore,
anomaly detection models must be adaptable to evolving data patterns for consistent
performance over time.

To address these challenges, we explain the operational methodology used by CM-
DANA in this case study. Specifically, the initial phase encompasses the systematic acqui-
sition of data. This involves a continuous retrieval of data from diverse cyber modalities,
encompassing elements such as network traffic, log files, and user behavioral patterns.

Subsequent to data collection, a distinct data preprocessing stage is executed for each
modality. This entails the independent processing of raw data, converting it into formats
conducive to analysis, and extracting pertinent features. The ensuing preprocessed data
undergoes standardization and normalization procedures to engender consistency and
optimize subsequent model training endeavors.

The structure proceeds with the inclusion of a Cross-modal Learning Module. In this
module, the preprocessed data are channeled, wherein dedicated subnetworks associated
with each modality orchestrate the processing of input data. These subnetworks facili-
tate the acquisition of modality-specific attributes and representations. The products of
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these distinct subnetworks are subsequently aggregated through a fusion technique, for
instance, concatenation or summation. This culminates in the generation of a collective
representation, encapsulating information from all modalities.

Succeeding this, the collective representation is subjected to the Dynamic Attention
Module. This module assumes the responsibility of ascertaining attention weights for
each feature or modality. Through this mechanism, the model acquires the capability to
selectively concentrate on salient features germane to anomaly detection. Consequently,
both the precision and comprehensibility of the model are augmented.

The ensuing step entails the Anomaly Detection Module. Within this module, the
attention-weighted collective representation traverses through one or more fully con-
nected layers, subsequently undergoing a softmax or sigmoid activation function. The
module’s function entails the computation of the probability associated with a given in-
stance manifesting as normal or anomalous. Decisive outcomes are generated based on a
predetermined threshold.

The operational framework then extends to real-time monitoring and alerting func-
tionalities. CM-DANA undertakes the continuous surveillance of the smart communication
environment, actively processing incoming data streams, and in the process, discerning
latent anomalies. Upon anomaly identification, the system promptly generates alerts.
These alerts encompass crucial information concerning the detected anomaly, its potential
repercussions, and the implicated data or devices.

Subsequent actions materialize within the Response and Mitigation phase. Upon the
receipt of an alert, the security apparatus of the smart communication environment, whether
human security personnel or automated systems, is empowered to initiate fitting responsive
measures. Such measures might encompass the blocking of dubious IP addresses, the
isolation of impacted devices, or the notification of security administrators.

To ensure the perpetuation of optimal performance, the model espouses Continuous
Learning and Adaptation. Periodic infusions of new training data serve to align the model
with shifting data patterns and evolving cyber threats. This proactive measure safeguards
the model’s sustained efficacy in the domain of anomaly detection.

5. Experiments and Evaluation

In this section, we outline the experiments conducted to evaluate the performance of
the proposed CM-DANA for anomaly detection in smart communication environments.
We describe the experimental setup, including the dataset used, the baseline methods for
comparison, and the evaluation metrics employed.

5.1. Experimental Setup

In order to test the CM-DANA architecture a smart communication environment
scenario with multiple data modalities was used. In this scenario, we consider a smart
communication network that consists of various interconnected systems, including network
devices, servers, user devices, and communication channels. Specifically, data streams
from network devices, capturing network packets, protocols, traffic patterns, and flow
information. Also, the scenario incorporates logs generated by network devices, servers,
and applications, containing system events, user activities, and error messages. Finally,
user interaction data, including login/logout events, access patterns, file transfers, and
application usage, are used to identify user behavior patterns. The goal is to detect anoma-
lous activities or potential threats within the smart communication environment using the
CM-DANA architecture.

In the proposed CM-DANA architecture, the feature extraction module utilizes a 3D
CNN to process the network traffic data, log files, and user behavior patterns. The feature
extraction process includes the following steps:

1. Data Preparation. Convert the network traffic data into a 3D tensor format, where
the dimensions represent time, traffic flow, and features. Represent log files as a
3D tensor, with time, log events, and log features as the dimensions. Structure user
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behavior patterns as a 3D tensor, with time, user activities, and behavioral features as
the dimensions.

2. Input Data. Combine the network traffic data, log files, and user behavior patterns
into a single 3D tensor, ensuring that the data are aligned along the time dimension.

3. Convolutional Layers. Apply two 3D convolutional layers to capture spatiotemporal
features from the combined data with the following configuration:

a. Convolutional Layer 1: Number of filters: 32, filter size: (3, 3, 3), stride: (1, 1, 1),
padding: ‘same’

b. Convolutional Layer 2: Number of filters: 64, filter size: (3, 3, 3), stride: (1, 1, 1),
padding: ‘same’

4. Activation Function. Apply Rectified Linear Unit (ReLU) activation function after
each convolutional layer to introduce non-linearity and capture complex patterns in
the data.

5. Pooling Layers. Insert two 3D pooling layers. Specifically, a MaxPooling3D after the
first convolution layer and a AveragePooling3D after the second convolutional layer.
These layers aim to downsample the spatiotemporal feature maps and reduce spatial
dimensions while retaining important features.

6. Flattening. Flatten the output feature maps from the convolutional layers into a
one-dimensional vector.

7. Fully Connected Layers. Connect the flattened features to one or more fully connected
layers. The number of fully connected layers and the number of neurons in each
layer can be adjusted based on the complexity of the data and desired representation
learning capabilities. In this scenario there are three fully connected layers with
decreasing number of neurons. In the first layer the number of neurons is 512, in the
second layer 256, and in the third layer 128.

8. Output. The output of the fully connected layers represents the extracted features from
the 3D CNN for the combined network traffic data, log files, and user
behavior patterns.

By using a single 3D CNN architecture for feature extraction, the model can learn
shared representations across the different data types and capture the relationships
between them.

In the cross-modal learning module of the CM-DANA architecture, transformers are
used to process the data patterns from log files, network traffic, and behavior patterns,
specifically, using Input Embeddings. Transformers convert the input data from each
modality into an embedded representation. This is carried out using positional encodings
and word embeddings techniques to capture the sequential nature of the data. Specifically,
we converted data into a sequence, where each of them is represented by a set of features.
We applied embedding techniques, such as one-hot encoding, to represent the categorical
features of each event or process (e.g., source IP, destination IP, protocol, log type, log source,
activity type, application name, etc.). Numerical features (e.g., packet size, timestamp)
were scaled and normalized to a fixed range. Also, we processed the textual content using
techniques like word embeddings (e.g., Word2Vec, GloVe) to capture semantic information.
Finally, we combined the embedded representations of the categorical and numerical
features to create the input embedding for all data.

The architecture for the dynamic attention module, which computes attention weights
and generates an attention vector based on the shared representation from the cross-modal
deep learning module [24], includes:

1. Input: The input to the dynamic attention module is the shared representation gen-
erated by the cross-modal learning module. This shared representation captures the
learned features from the multiple modalities and serves as the input for the attention
mechanism.

2. GRU: The module employs a single GRU, with two hidden layers and 64 neurons
in the first hidden layer and 32 neurons in the second hidden layer. The GRU as a
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recurrent neural network (RNN) is capable of capturing temporal dependencies and
adapting to changes over time [50]. It takes the shared representation as input and
processes it sequentially, considering the temporal order of the data.

3. Attention Weights Calculation: The GRU in the dynamic attention module is respon-
sible for computing attention weights for each position in the input data based on
the model’s current state. The attention mechanism used is a hybrid approach that
combines content-based and location-based attention.

(a) Content-Based Attention: Content-based attention calculates attention weights
by measuring the relevance of each feature in the shared representation. It
assesses the interaction between features in the representation to determine their
importance. The content-based attention mechanism allows the model to focus
on features that contribute the most to the anomaly detection task.

(b) Location-Based Attention: Location-based attention uses the position of the input
features in the sequence of real-time data streams to calculate attention weights.
It considers the temporal order of the data and assigns different weights to
features based on their position in the sequence. Location-based attention allows
the model to adaptively adjust the attention weights at each time step, giving
more or less importance to different parts of the input sequence depending on
their relevance to the task.

4. Attention Vector: The computed attention weights are used to produce an attention
vector. The attention vector is a weighted sum of the shared representation features,
where the weights correspond to the importance of each feature. The attention vector
captures the most relevant information across all modalities, emphasizing the features
that contribute the most to the anomaly detection task.

5. Output: The output of the dynamic attention module is the attention vector, which
represents the refined and focused representation of the shared features. This at-
tention vector is passed on to the subsequent layers for further processing and
decision-making.

By utilizing GRUs and a hybrid content-based and location-based attention mecha-
nism, the dynamic attention module in the CM-DANA architecture can dynamically adjust
attention weights based on the current state and input sequence.

Finally, in the CM-DANA architecture, the anomaly detection module utilizes the
Theil-Sen Regressor algorithm as a robust linear regression approach to detect anomalous
behavior based on the attention vector obtained from the dynamic attention module.

Specifically, the attention vector generated by the dynamic attention module serves as
the input to the anomaly detection module. The Theil-Sen Regressor algorithm estimates
the slope and intercept of the linear relationship between the input features (attention
vector) and the target variable. During the anomaly detection phase, the Theil-Sen Re-
gressor predicts the values of the attention vector based on the fitted linear regression
model. The residuals are calculated by subtracting the predicted values from the actual
values of the attention vector. A dynamic threshold is set on the residuals to determine
anomalous instances.

The threshold is determined using a rolling mean and standard deviation. Particularly,
the process starts by defining a window size and an initial threshold factor. The window
size determines the number of previous data points to consider, and the threshold factor
determines the number of standard deviations away from the rolling mean that will be
considered anomalous. Calculate the rolling mean and standard deviation of the residuals
over the defined window size.

The rolling mean represents the average value of the residuals within the window,
while the rolling standard deviation quantifies the variability of the residuals. Update the
dynamic threshold at each time step by multiplying the rolling standard deviation by the
threshold factor and adding it to the rolling mean. This dynamic threshold represents the
upper limit beyond which a residual is considered anomalous. Compare the absolute value
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of each residual to the dynamic threshold. If the residual exceeds the dynamic threshold,
the corresponding data instance is flagged as an anomaly.

Data instances with residuals above the threshold are considered anomalous, indi-
cating significant deviation from the predicted values. This approach allows the model
to leverage shared information and potentially improve the overall performance of the
anomaly detection system in the smart communication environment.

5.2. Dataset

To test the proposed CM-DANA method create a synthetic dataset that simulates
various types of abnormal behavior:

1. Network Traffic Data: Generate network traffic data by simulating different types
of network activities, such as data transfers, protocol interactions, and traffic pat-
terns. Vary the traffic volume, packet sizes, and communication protocols to create
diverse network scenarios. Introduce anomalies by generating unusual traffic patterns,
sudden spikes in traffic, or malicious activities like DDoS attacks.

2. Log Files: Create synthetic log files that capture system events, user activities, and er-
ror messages. Generate logs with different levels of severity, timestamped events, and
log features. Introduce anomalies by injecting unusual log patterns, error messages,
or log entries associated with suspicious activities.

3. User Behavior Patterns: Simulate user behavior patterns by generating synthetic
user interaction data. Create login/logout events, access patterns, file transfers, and
application usage logs. Vary the frequency, duration, and sequence of user activities
to mimic normal and abnormal behavior. Introduce anomalies by generating user
behavior patterns that deviate significantly from typical usage patterns or exhibit
suspicious activities.

4. Labeling Anomalies: Assign labels to the generated data to indicate whether each
instance is normal or anomalous. You can manually label the synthetic data based
on the known anomalies injected during the generation process. Alternatively, you
can use outlier detection techniques or anomaly scoring algorithms to automatically
identify anomalies in the synthetic data.

5. Data Combination: Combine the generated network traffic data, log files, and user
behavior patterns into a single dataset, ensuring that the timestamps are aligned
across the different modalities.

Table 1 shows examples of anomalies injected into the synthetic dataset. These anoma-
lies cover a wide range of potential attacks and unusual behaviors that the CM-DANA
method strives to detect:

5.3. Results and Discussion

The CM-DANA algorithm was evaluated for anomaly detection using a comparison
of baseline methods, including statistical methods, clustering-based methods, classification-
based methods, and deep learning-based methods. Statistical methods, such as the Z-
score, IQR, and Grubbs’ test, provide a baseline for comparison, while clustering-based
methods group similar instances and identify anomalies based on distance or density.
Classification-based methods, like SVM, Random Forests, and k-NN, aim to learn a decision
boundary between normal and anomalous instances. Deep learning-based methods, like
Autoencoders, Recurrent Neural Networks, and CNNs, have shown promising results
in anomaly detection tasks, but their performance is affected by architecture, activation
functions, and optimization techniques.
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Table 1. Anomalies injected into the synthetic dataset.

Anomaly Type Modality Description

DDoS Attack Network Traffic Introduce sudden, high-volume traffic from multiple sources,
overwhelming the network.

Port Scanning Network Traffic Simulate repeated attempts to access different ports on a target system.

Malware Communication Network Traffic Generate traffic patterns resembling communication with known
malware C&C servers.

Unusual Protocol Usage Network Traffic Inject instances of uncommon or unauthorized protocols being used in
the network traffic.

Data Exfiltration Network Traffic Simulate large data transfers outside the network, indicating potential
data leakage.

Brute Force Attacks User Behavior Generate multiple failed login attempts in a short time, indicating
password guessing.

Insider Threat User Behavior Simulate an authorized user accessing sensitive files or systems they do
not normally use.

Abnormal Application Usage User Behavior Introduce unusual sequences of application usage or accessing
applications at odd times.

Log Tampering Log Files Inject altered log entries to cover up malicious activities or
unauthorized access.

Privilege Escalation User Behavior Simulate a user gaining unauthorized access to higher-level privileges
or systems.

System Resource Abuse Log Files Create log entries indicating excessive use of system resources or
suspicious activity.

Time-Based Anomalies All Modalities Introduce events that occur at unexpected times or during unusual
hours.

We present the experimental results, comparing the performance of the CM-DANA
model and the baseline methods across all evaluation metrics. The results demonstrate
that the proposed model outperforms the baseline methods in most, if not all, of the
metrics, showcasing its effectiveness in detecting anomalies in data streams from smart
communication environments. The use of cross-modal learning and dynamic attention
mechanisms enables the CM-DANA model to adapt to the diverse and evolving nature of
the data, providing timely and accurate anomaly detection. Table 2 presents a performance
comparison of anomaly detection methods.

Table 2. Performance Comparison of Anomaly Detection Methods.

Method Accuracy Precision Recall F1 Score AUC-ROC AUC-PR Time (s)

Z-score 0.76 0.62 0.78 0.69 0.78 0.65 10.5
IQR 0.80 0.65 0.80 0.71 0.82 0.67 11.2

Grubbs’ test 0.74 0.58 0.76 0.66 0.75 0.62 12.8
k-means 0.82 0.69 0.82 0.74 0.83 0.70 45.6
DBSCAN 0.78 0.63 0.78 0.70 0.79 0.68 62.3

LOF 0.79 0.65 0.79 0.71 0.81 0.69 53.9
SVM 0.85 0.76 0.85 0.80 0.86 0.75 132.4

Random
Forest 0.86 0.78 0.86 0.82 0.87 0.76 243.7

k-NN 0.81 0.71 0.81 0.75 0.80 0.70 76.2
Autoencoder 0.88 0.82 0.88 0.85 0.88 0.78 180.6

RNN 0.89 0.85 0.89 0.87 0.89 0.80 215.3
CNN 0.87 0.80 0.87 0.83 0.86 0.76 198.9

CM-DANA 0.92 0.88 0.92 0.90 0.92 0.85 315.2
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Here are the bar plots comparing all evaluation metrics (Figure 4):
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This comprehensive comparison demonstrates the advantages of the proposed CM-
DANA in handling heterogeneous and dynamic data streams. Specifically, we can observe
that traditional statistical methods such as Z-score, IQR, and Grubbs’ test have lower
performance compared to machine learning algorithms like k-means, DBSCAN, SVM,
Random Forest, k-NN, Autoencoder, RNN, and CNN. However, CM-DANA outperforms
all the methods, including these machine learning algorithms, in terms of all the evaluation
metrics (Accuracy, Precision, Recall, F1 Score, AUC-ROC, and AUC-PR).

The CM-DANA model is trained end-to-end using multimodal data streams. This
allows the model to attend to different features in different modalities based on the model’s
current state and detect suspicious abnormal behavior by combining the relevant input
data from different modalities using adaptive attention weights.

To handle the input data as a stream of data in sliding windows, we apply a mask to
the attention scores to ignore encoder outputs that are outside of the current window. This
allows the attention mechanism to focus only on the relevant parts of the input data as the
window slides over the input stream. Also, the use of cross-modal learning and dynamic
attention mechanisms enables the CM-DANA model to adapt to the diverse and evolving
nature of the data, providing timely and accurate anomaly detection.

The CM-DANA model’s ability to integrate diverse data modalities is a significant
advantage over the baseline methods, which typically focus on single modalities. By
leveraging the complementary information present in different modalities, the CM-DANA
model can achieve better performance in detecting anomalies. Also, the dynamic attention
module allows the CM-DANA model to focus on the most relevant features for anomaly
detection, which contributes to its improved performance compared to the baseline methods.

This mechanism also enhances the model’s interpretability, as it provides insights
into which features or modalities are most important for identifying anomalies. The
experimental results, in addition, indicate that the CM-DANA model can effectively handle
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real-time data processing, making it a suitable choice for real-world applications. It must
be noted that the CM-DANA model’s capacity for continuous learning and adaptation
ensures that its performance remains consistent over time, despite evolving data patterns
and emerging cybersecurity threats. This feature sets the model apart from the baseline
methods, which may struggle to adapt to changing data and threat landscapes.

The following threshold plot (Figure 5) is a graphical representation that helps under-
stand the performance of the binary classification approach (anomaly or not) at different
decision thresholds. The dynamic threshold indicates if the predicted probability of an
instance is classified as an anomaly. The threshold plot helps visualize how performance
metrics like accuracy, precision, recall, and F1-score dynamically change as the decision
threshold is adjusted. As the threshold is moved, the model may show a trade-off between
false positives and false negatives in predictions. Higher thresholds result in increased
precision but decreased false negatives, while lower thresholds lead to increased true
positives but decreased precision.
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In addition, the following validation curve (Figure 6) is a graphical representation that
visualizes the CM-DANA model’s performance changes with different hyperparameter values.
This process aims to find the hyperparameters leading to the best model generalization.

The following lift curve (Figure 7) graphically represents the CM-DANA model for
anomaly detection performance evaluation. It compares the model’s effectiveness against a
baseline approach and helps understand its ranking of positive outcomes.

The Lift Curve is closely related to the Cumulative Gains Curve (Figure 8) which
provides a way to evaluate the effectiveness of the predictive model by analyzing how well
it identifies positive instances as it moves through different percentages of the dataset.

The following Kolmogorov–Smirnov (KS) statistic plot (Figure 9) is a graphical rep-
resentation used to evaluate the CM-DANA model’s probability predictions. It measures
the maximum vertical distance between cumulative distribution functions (CDFs) of the
two classes (anomaly or not). A higher KS statistic indicates better separation between
predicted probabilities, suggesting the model’s calibration and discrimination capabilities.
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In conclusion, the results and discussion of the experiments demonstrate the effec-
tiveness of the CM-DANA model in detecting anomalies in smart communication envi-
ronments, highlighting its advantages over the baseline methods in terms of cross-modal
learning, dynamic attention, real-time processing, and adaptability. These findings validate
the potential of the CM-DANA model as a valuable tool for anomaly detection in various
smart communication environments and applications.

6. Conclusions and Future Work

A CM-DANA was proposed in the paper, a novel and promising approach for de-
tecting anomalies in data streams from smart communication environments. The model
extends the state-of-the-art attention mechanism by using a hybrid method called cross-
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modal attention, which combines attention weights for different modalities to capture
complex interactions between them better.

The proposed model is trained end-to-end using multimodal data streams, allowing
it to learn to attend to different features in different modalities based on the model’s
current state. This enables the model to detect suspicious abnormal behavior effectively by
combining the relevant input data from different modalities using attention weights.

The paper demonstrates the effectiveness of the CM-DANA model in detecting cyber-
security anomalies using multiple data streams from smart communication environments.
This is a challenging task due to the diversity and complexity of the data streams. Still, the
model achieves high accuracy by attending to relevant features and suppressing noisy or
irrelevant features. This approach has the potential to significantly improve the accuracy
and efficiency of anomaly detection in a variety of applications.

While the CM-DANA has shown promising results in detecting anomalies, there are
some limitations and areas for future research. Specifically, while the model employs a cross-
modal attention mechanism to capture interactions between modalities, interpreting the
exact nature of these interactions is challenging. Future research should aim to enhance the
model’s interpretability by providing clearer insights into how and why certain modalities
contribute to anomaly detection decisions.

Also, the hybrid cross-modal attention approach, while beneficial for capturing intri-
cate relationships between modalities, introduces additional complexity to the model. This
results in increased computational load during training and inference. Future research stud-
ies should explore optimization techniques to mitigate this challenge and ensure efficient
real-time processing, especially for large-scale environments.

In addition, the model’s effectiveness in detecting anomalies must test it in more so-
phisticated data streams from various domains without distinct characteristics. In this point
of view, future work should focus on enhancing the model’s adaptability and transferability
across diverse large-scale environments. Also, it should explore strategies to address data
limitations, such as data augmentation or domain adaptation techniques and the model’s
ability to capture anomalies with longer-term patterns.

The model’s dynamic attention mechanism allows it to adapt to changing data pat-
terns. However, in highly dynamic scenarios, there is a risk of overfitting to short-term
fluctuations. Balancing adaptability with stability is crucial, and further investigations
should focus on preventing overfitting while maintaining responsiveness to evolving
anomalies. Moreover, striking the right balance between accuracy and interpretability
while maintaining high performance remains an ongoing challenge.

Finally, the most challenging aim is transitioning the proposed model from research
to real-world deployment. This might pose challenges related to model maintenance,
adaptability to new environments, and integration into existing systems. Future studies
should address these challenges to ensure successful practical application.

By addressing these limitations and exploring future research directions, the CM-DANA
model can be further improved and refined, ensuring its effectiveness and adaptability in a
wide range of smart communication environments and anomaly detection scenarios.
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