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Abstract: Traditional information security risk assessment (RA) methodologies and standards,
adopted by information security management systems and frameworks as a foundation stone towards
robust environments, face many difficulties in modern environments where the threat landscape
changes rapidly and new vulnerabilities are being discovered. In order to overcome this problem,
dynamic risk assessment (DRA) models have been proposed to continuously and dynamically assess
risks to organisational operations in (near) real time. The aim of this work is to analyse the current
state of DRA models that have been proposed for cybersecurity, through a systematic literature
review. The screening process led us to study 50 DRA models, categorised based on the respective
primary analysis methods they used. The study provides insights into the key characteristics of
these models, including the maturity level of the examined models, the domain or application area
in which these models flourish, and the information they utilise in order to produce results. The
aim of this work is to answer critical research questions regarding the development of dynamic risk
assessment methodologies and provide insights on the already developed methods as well as future
research directions.

Keywords: cybersecurity; dynamic risk assessment; machine-learning; quantitative risk assessment

1. Introduction

According to NIST SP 800-160 Vol.1 [1] and ISO Guide 73:2009 [2], RA is the “overall
process of risk identification, risk analysis, and risk evaluation”. NIST SP 800-53 Rev. 4 [3]
defines RA as “the process of identifying risks to organisational operations (including
mission, function, image, reputation), organisational assets, individuals, other organisa-
tions, and the Nation, resulting from the operation of an information system. Part of risk
management, incorporates threat and vulnerability analysis, and considers mitigations
provided by security controls planned or in place”.

RA based on typical standardised risk management frameworks and methodologies,
like ISO 31000:2018 [4] and the NIST 800-37 Risk Management Framework [5] cannot
maintain the security posture of the organisation to the required levels, since they cannot
adapt well to the modern and dynamic environment in which organisations operate [6].
Organisations cannot rely on rigid and static RA processes because they cannot adapt in
the current rapidly changing environment and, in addition, they create a misconception
about the threats and their potential impacts [7]. Companies face an increasing number of
malicious actions from various sources, which necessitate the need for an effective dynamic
real-time RA and management process [8].

As a result, the scientific community has turned its attention to the so-called “dynamic
risk assessment”. Although there are many definitions for RA, when it comes to the
definition of DRA there is a lack in the literature. The definition that is considered to be the
most appropriate for this study is the following: dynamic risk assessment is the continuous
process of identifying and assessing risks to organisational operations, dynamically and in
a (near) real-time manner. The idea behind DRA is to identify and assess the risk on the
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spot and to make quick decisions on how to best mitigate this risk. For the purpose of our
research, we characterised as dynamic, any system, model, or framework that used as input
any kind of real-time data coming from its environment and, based on them, calculated
the risk.

DRA constitutes a very useful tool that could help to evaluate and counter cyber
threats in current environments, which are complex and evolve rigorously, as well as to
maintain the organisation’s security posture or improve it to the most appropriate level.
Thus, our motivation to write this article stemmed from the need to analyse the current
status around the area of DRA in cybersecurity. Our work focused on the DRA models
proposed in the literature in the area of cybersecurity, regardless of the domain in which
these models have been applied or the analysis method they have used. We tried to examine
this topic holistically, having no prior limitation.

The main contribution of this paper was an analysis of the existing literature regarding
DRA schemes in the field of cybersecurity to identify methods and techniques that were
being applied in the respective models. We further classified these schemes, based on the
primary analysis method they utilised for the risk assessment process, and we identified the
domain(s) that each of them was being applied. Moreover, we examined both the output
(quantitative or qualitative risk analysis) that these models utilised, as well as the input
data they used. Finally, we examined the proposed models with respect to their maturity
status. To the best of the authors’ knowledge, this is the first literature review focused on
DRA in the field of cybersecurity, regardless of the proposed approach and the domain in
which these models are being applied.

The rest of this paper is structured as follows: Section 2 presents related work and
Section 3 presents the research methodology used for this work. Section 4 provides the
detailed results of the DRA models found in the literature, categorised under the primary
analysis method they apply. Meanwhile, Section 5 undertakes a thorough discourse on
these results. Section 6 concludes the study.

2. Related Work

In the past few years, several surveys have focused on RA related topics in var-
ious domains. A review of RA methods for SCADA systems only was conducted by
Cherdantseva et al. [9]. The authors studied 24 methods, and concluded that because of
the nature of SCADA systems and the available data relating to cyber attacks, probabilistic
RA methods tend to underestimate the probability of the occurrence of a cyber event.
Accordingly, the calculated risk, which depends on the probability of the occurrence of an
attack along with the estimated losses from the attack, tends to be lower than the actual one.

Eckhart et al. [10] focused on quantitative RA methods in industrial control systems
(ICSs), to report the absence of DRA methods tailored to the complex needs of an ICS.
Jiang et al. [11] concluded that DRA is a necessary tool for enhancing the safety of a network
and they analysed the key technologies that are used in each RA method (qualitative,
quantitative, comprehensive).

Lopez et al. [12] tried to give prominence to the need for DRA in the information
systems domain. They asserted that despite the existence of numerous standards, they tend
to view RA as a periodic process rather than a real-time one. In recent years, there has been
a turning from classic RA to DRA, which adopts the use of information originating from
databases, such as the National Vulnerability Database (NVD), as input, in order to keep
the system up to date, and also the use of attack trees to define possible attack patterns
against the information system.

The closest to our work is the research that was conducted by Erdogan et al. [13],
in which the authors reported that the number of papers about artificial intelligence (AI)-
supported security RA has been increasing since 2010, with a growth rate of 133% between
2010 and 2020. Their approach focused mostly on identifying and/or estimating security
risks, and primarily made use of Bayesian networks and neural networks as supporting
AI methods/techniques. Although the aforementioned literature review is close to ours,
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they focused only on the connection between AI and RA, leaving out other supported
methods. In addition, our work provides useful information regarding the input data that
these models used along with the produced results. We also examined the maturity level of
each of the proposed models.

3. Research Methodology

According to NISTIR 8170 [14], cybersecurity is “The ability to protect or defend the
use of cyberspace from cyber attacks”. Hence, cybersecurity is the framework of securing
anything that is vulnerable to hacks, attacks, or unauthorised access which mainly consists
of computers, devices, networks, servers, and applications. It also refers to the protection
of any kind of digital data.

Such a definition of cybersecurity is provided by NIST 800-53 Rev. 5 [3], according
to which, cybersecurity is “Prevention of damage to, protection of, and restoration of
computers, electronic communications systems, electronic communications services, wire
communication, and electronic communication, including information contained therein,
to ensure its availability, integrity, authentication, confidentiality, and non-repudiation”.
The same Special Publication defines information security as “The protection of infor-
mation and information systems from unauthorised access, use, disclosure, disruption,
modification, or destruction in order to provide confidentiality, integrity, and availability”.

Although there is some overlapping between these two terms, cybersecurity refers
clearly to the protection of any kind of electronic information, while information security is
referring to the protection of any kind of information both in electronic and physical form,
such as the counter-measures that should be applied in order to protect information stored
in paper forms.

Although in this respect, information security can be considered as a superset of
cybersecurity and, therefore, papers about DRA in information security might also address
cybersecurity-related aspects, in this review paper, we focused only on those with a clear
orientation on cybersecurity.

Considering the above, the initial set of papers was provided by SCOPUS using as a
search string the keywords “dynamic risk assessment” AND “cybersecurity” or “cybersecu-
rity” or “cyber” and “security”. More specifically, our search string was: (TITLE-ABS-KEY
(dynamic AND risk AND assessment) AND (TITLE-ABS-KEY (cybersecurity) OR TITLE-
ABS-KEY (cyber AND security))), and it was conducted on the 21 May 2023. Based on
this query, SCOPUS returned 271 papers for the period 2001–2023. Having completed an
initial check based on the papers’ abstracts, we eliminated 204 as not relevant to our query.
Subsequently, we conducted a more comprehensive scrutiny of the residual 67 papers.
This evaluation resulted in the identification of 51 papers specifically addressing topics
pertaining to DRA within the realm of cybersecurity. Within the definitive set of 51 papers,
a comprehensive total of 50 papers were considered appropriate for inclusion in our review.
The sole remaining paper was excluded due to its lack of suggestion for any dynamic
methodologies. Instead the excluded paper proposed an extension of the incident ob-
ject description exchange format (IODEF) to IODEF-DRA, with the intention of enabling
utilisation by DRA tools [15]. Figure 1 presents the outline of our research methodology.

The following research questions (RQ) regarding the DRA models proposed in the
literature were answered through our analysis.

RQ1: What primary analysis methods are being used by the proposed DRA models?
RQ2: What are the domains or application areas to which the proposed DRA models

were applied?
RQ3: Are the proposed DRA models based on quantitative or qualitative methods?
RQ4: What are the main sources of data that the studied models use?
RQ5: What is the maturity level of the proposed models?

Each of the above research questions is succinctly summarised and juxtaposed with
the findings obtained from other studies. This critical examination is expounded upon in
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Section 5, with dedicated subsections that scrutinise and contextualise the outcomes in
relation to the existing body of research.

Figure 1. Research methodology outline.

4. Results

Considering the primary analysis method that each of the 50 studied proposed models
utilised, we categorised them in three distinct areas: “artificial intelligence–machine learn-
ing” (AI/ML), “mathematical-model-based”, and “unclassified”. Table 1 demonstrates
that the majority of the studied models belonged to the AI/ML category. The models
associated with each of the aforementioned categories were organised and presented in a
chronologically exclusive order for each category.

Table 1. Number of papers per category.

Category AI/ML Mathematical Model
Based Unclassified

# of Papers 24 13 13
Percentage 48% 26% 26%

Figure 2 presents the basic categorisation of DRA models regarding the primary risk
analysis method.

Our research also focused on the domain in which each DRA model was applied.
As many of the examined models targeted the same domain but this domain was referred
in a different way, we applied grouping in order to create the following categories for
each domain:

1. Information and communications technology (ICT) domain, which includes infor-
mation systems, networks, computing infrastructures, and every other computer
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environment (such as small and medium-sized enterprises (SMEs), hospitals, fog, and
high-performance computing).

2. Industrial control systems (ICSs) domain, which includes SCADA and industrial pro-
duction systems (IPSs), electrical power and energy systems (EPESs), cyber-physical
systems (CPSs), and critical infrastructures (CI).

3. Smart city (SC) domain, which contains large-scale, dynamic, and complex IoT networks.

Figure 2. Primary analysis methods.

Based on the aforementioned classification, Table 2 presents the number of models
that were proposed for each domain.

Table 2. Number of applied models per domain.

Domain ICT ICS SC

# of Models 21 26 3
Percentage 42% 52% 6%

4.1. Artificial Intelligence/Machine Learning

Models in this category utilise AI and ML techniques as their primary analysis method.
The vast majority of the studies (47%) and their proposed models belong to the AI/ML
category. Due to the number of papers and the variety of techniques applied to this
category, we further classified them based on the specific AI or ML method they utilised.
This resulted in the adoption of the following subcategories: Bayesian networks, attack trees,
neural networks, artificial immunity, and association analysis. For those models that utilise
multiple techniques, such as incremental learning algorithms in cases of incomplete or
missing data, we classified them based on their primary analysis method. Table 3 presents
the number of papers that belong to each subcategory and the respective percentage.

Table 3. AI/ML-based categories of DRA methods.

Sub-
Category

Bayesian
Networks Attack Trees Neural

Networks
Artificial

Immunity
Association

Analysis

# of Models 11 7 3 2 1
Percentage 45.8% 29.2% 12.5% 8.3% 4.2%
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4.1.1. Bayesian Networks

Cam et al. [16] proposed a mission assurance policy, that adapts to the dynamic
security status of all assets using a Petri net model along with binary or multilevel logic
decision, to determine the security status of cyber assets. The main goal of the proposed
model was to determine if a mission could be completed. Mission assurance policy is the
continuous assessment of cyber assets which are necessary for an organisation to fulfil
specific tasks. Assets fulfil certain tasks, which accomplish specific missions accordingly.
This quantitative model is based on a risk management policy which consists of five steps:

1. Assets’ vulnerability assessment, based on a vulnerabilities database such as the NVD.
2. Identification of likelihood and threats, based on data from the intrusion detection

system (IDS).
3. Determination of impact and counter-measures (cost-benefit analysis).
4. Quantitative risk assessment using Bayesian networks.
5. Risk assessment evaluation (risk mitigation options and prioritisation).

According to the authors, their proposed model can give a clearer picture to decision-
makers about their system in real time. Its application was demonstrated through a
simple example.

Another model was presented by Cam et al. [17] to dynamically and quantitatively
assess risks on networks. This model requires the use of a vulnerability scanner in order
to detect vulnerabilities of the examined system. A Bayesian network is then used to
capture relationships between detected vulnerabilities. The authors then use the common
vulnerability scoring system (CVSS) model and expand it by taking into consideration the
criticality of an asset’s mission, the current damage of an asset (the impact of an attack on
a specific asset), and how this vulnerability is going to affect other assets’ vulnerabilities.
They also use a hidden Markov model (HMM) and Bayesian networks to dynamically
model cyber operations, events, and observations (originating from IDS, firewall, etc.) in
order to use them to assess dynamically the exploit likelihood in the network. Risk is
estimated by pinpointing the most likely path of exploited vulnerabilities, their likelihood
of exploitation, and their associated impacts. The authors perform a simulation utilising
synthetic data to demonstrate that, given the vulnerabilities of a network, their model is
able to quantify and assess risk.

Henshel et al. [18] introduced a dynamic quantitative RA approach which models
both the system (software, hardware, network) and the human factor. The authors used
Bayesian networks in order to analyse and assess the cyber risks (low–medium–high) along
with direct acyclic graphs (DAGs) to represent the connections between nodes. This model,
which is built using experts’ opinions to define the risk variables of the system (in this
case a structured query language (SQL) server), takes into consideration the dependencies
between cyber assets and their interactions with the respective events in order to quantify
assets’ vulnerabilities, the impact of attacks, and the risks. The authors demonstrated its
application in a scenario that included an SQL injection attack.

Zhang et al. [19] recommend a multilevel Bayesian network to describe the propa-
gation of the risk caused by cyber attacks. It consists of an incident model, a function
model, and an attack model. In addition, a novel multimodel-based approach to assess
the cybersecurity risk for ICSs is developed. This approach can determine the current
cybersecurity risk value by estimating probabilities and quantifying the consequences of
numerous potentially hazardous scenarios arising from malicious attacks. The model uses
both offline and online/real-time data. The offline data originate from vulnerability scan-
ners, statistical analysis, experts’ opinions, and they are used to determine the probabilities
of an attack, the dependencies between functions, the relations between incidents, and
the risk propagation. The online data, which comprise the input of the system, originate
from attack evidence (IDS) and anomaly evidence (anomaly detection system—ADS). ADS
data are compared with normal values to produce information related to the system’s
malfunction. All these data are processed using Bayesian networks. The authors performed
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a simulation on a chemical reactor control system to demonstrate that their approach was
able to calculate the cybersecurity risk of an ICS in real time.

A dynamic, quantitative model based on Bayesian networks was presented by Huang
et al. [20] in order to address cyber risk for SCADA environments. The model combines the
posterior probability along with the value of an asset in the SCADA environment to calcu-
late the risk. The first step is to differentiate the nodes into two categories: the vulnerability
nodes (nodes that have vulnerabilities which can be discovered by a vulnerability scanner
software or by querying the common vulnerabilities and exposures database—CVE) and
the privilege escalation nodes (nodes that can be used to damage the system). Bayes’ theo-
rem is used to predict the posterior probability based on real-time data/evidence collected
from the IDS. The authors used multiple techniques in order to make more accurate risk
predictions, such as:

• A leaky noisy-OR gate to predict unknown attacks.
• Offline batching (although complete datasets existed offline, they utilised the expecta-

tion maximisation principle to fill the missing values because it is quite common for
the attack sample to be incomplete for SCADA systems).

• Online incremental learning in order for the model to be able to update and adapt to
real-time observations.

The model combines historical data and real-time observations, using machine learn-
ing techniques to make accurate predictions. A chemical process network was simulated
by the authors to demonstrate that the proposed model is able to provide real-time risk
calculations for known and unknown attacks.

Peng et al. [21] proposed a method to quantitatively calculate cyber risk in ICS envi-
ronments. Real-time data (evidence from attack) are fed to the Bayesian network along with
the ICS security knowledge, which contains information about vulnerabilities, functions,
accidents, and assets. The output of the Bayesian network is the probability of occurrence
of an event which is combined with the impact, to calculate the real-time risk. The value
of the impact depends on the severity of the affected asset. An expectation maximisation
algorithm is chosen in case the data are incomplete. The authors conducted a case study on
a simulated chemical control process to show that their model can achieve a high level of
risk accuracy in real time.

Zhu et al. [22] introduced a model to quantitatively assess the risk in IPSs by calculating
the probabilities and consequences of an abnormal event (tampering with control strategies).
The model consists of two parts, probability inference and loss calculation, which were
combined to produce real-time risk. An extended multilevel flow model (EMFM) is used
to describe the production process (structures and functions of the system) quantitatively,
and based on this, the model is able to forecast the consequences of an abnormal event (loss
calculation). Regarding the probability inference, a Bayesian network based on the EMFM
is used to infer the probabilities of an abnormal event. The system uses as input established
control strategies and attack evidence from the IDS. The authors carried out simulations on
a chemical process system to present the ability of the proposed model to quantify the risk.

Zhang et al. [23] presented a novel dynamic quantitative model to address the cyberse-
curity risk assessment in ICS. The model feeds a fuzzy probability Bayesian network with
cyber attack knowledge, system function knowledge, hazardous incident knowledge, and
the system’s asset knowledge. The authors used fuzzy probability in order to replace the
crisp probabilities required in Bayesian networks. In addition, the model receives as input
anomaly evidence detected by anomaly detectors, as well as attack evidence detected by the
IDS. Based on this information the fuzzy probability Bayesian network interference engine
calculates the posterior probability. Finally, the risk is calculated based on the posterior
probability and asset losses. Simulations on a simplified chemical reactor were conducted
by the authors to present the ability of their model to evaluate risk in a timely manner.

A DRA approach that aims to reduce the cyber risk of CI was presented by Zhu et al. [24],
taking into consideration the cyber-physical interaction. A typical CI consists of a several
stations and a control centre. The model consists of two components: DRA and decision
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making. With respect to the DRA component, every station employs a Bayesian network
that utilises real-time attack data from the IDS as input, and generates probabilities for
station capacities as output. The station capacity is the capability of a station to work
as planned. Then, the probabilities of all station capacities are obtained the same way.
The final output of the risk assessment process is the real-time system risk caused by an
attack strategy. The decision-making approach for cyber-risk reduction is based on the
attack strategy detected by the IDS and the counter-measures that can be applied in order to
reduce the risk. Finally, the net benefit of each counter-measure is calculated. A simulation
was carried out on a simplified water supply system in order for the authors to prove
that their model is able to evaluate cyber risk in real time and to provide the optimal
decision-making approach.

Debneath et al. [25] recommended HPCvul, a novel approach for vulnerability and
risk assessment in high-performance computing (HPC) networks utilising the NVD repos-
itory, CVSS scoring, and a network monitoring tool such as IDS. HPCvul agencies are
deployed in HPC subnetworks to collect information such as hosts’ configurations and
services, deployed software, topology, etc. HPCvul uses a Bayesian attack graph to conduct
real-time RA by examining vulnerabilities and their dependencies within the network.
This allows the model to detect potential attack paths and evaluate the likelihood of an
HPC target being compromised by an attacker. Furthermore, quantitative RA metrics
are defined to aid in security decision making. Relative case studies were conducted to
showcase that this approach is able to assess the probability of compromising a target in
dynamic environments.

A dynamic model to quantitatively address cybersecurity risk in distributed CPSs
was proposed by Zhou et al. [26]. Based on a distribution network topology and the
CVSS scoring mechanism, a Bayesian network model is built. The attacker’s selectivity in
attacking targets during cyber attacks is taken into consideration using a combination of
the fuzzy analytic hierarchy process (FAHP) and entropy weight method, incorporating
both subjective expert opinions and objective indicators. In addition, the model considers
the available defence resources. The authors used GeNle to create three different attack
scenarios simulations in order to evaluate their model.

4.1.2. Attack Trees

Kotenko et al. [27] presented a security metrics model, which is used for the assess-
ment of risk in distributed information systems. The model takes into consideration the
topological dependencies, the severity of attack actions, the skills of adversaries, and the
current security state of the system (events, security level, attack surface). The system
is able to calculate both static and dynamic risk. The dynamic (performance-based) risk
is based on real-time data. This technique uses an external vulnerability database along
with the target environment’s network topology to generate attack graphs, and combines
the latter with information from the IDS in order to dynamically calculate the attacker’s
position and their possible network path.

A quantitative risk assessment methodology based on attack–defence trees (ADTs)
was recommended by Ji et al. [28], taking into consideration both the attack cost and
the defence cost. The overall idea is to build the ADT based on the description of the
system’s vulnerabilities. The model is capable of calculating many variables such as cost of
attack/defence, probability of success, impact cost, revised attack cost, revised impact, etc.
(revised means that counter-measures are applied). The authors implemented a case study
for a SCADA system to demonstrate that the revised attack cost, i.e., what the attacker
needs to spend, increases when the counter-measures are applied. Accordingly, the revised
impact is reduced.

A model aiming to evaluate the current and the future security posture of an enter-
prise’s computer network was introduced by Abraham et al. [29]. In order to forecast how
the security posture of the network will vary over time, the authors construct an attack
graph that captures the interdependencies of all vulnerabilities discovered in the enterprise
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software. The model determines the initial value of a vulnerability and how this value will
develop over time by taking into account the characteristics of the CVSS metric framework.
Incorporating the prior analysis (relationships between various network vulnerabilities),
they use a Markov model to explain the attacks. The probability that the attacker would
succeed in their objective is expressed using a probabilistic path. Although the proposed
model is used as a predictive model, it can be used to assess the current risk of an enterprise
in a quantitative manner. A case study showed that the proposed model was able to
visualise and objectively evaluate network security.

Kanoun et al. [30] presented a model in order to bridge the gap between technical
and organisational risk in ICT systems. In their work, they introduced two primary
concepts: elementary risk (ER), which pertains to a single detrimental incident affecting a
strategic asset, resulting from a possible technical attack scenario which involves a singular
supporting asset, e.g., a server; and composite risk (CR), which aggregates the ER based on
a specific criteria (technical or organisational, based on specific detrimental events). Their
proposed model consists of:

1. An attack graph generator, which takes into consideration the system topology along
with a vulnerability database, such as NVD.

2. “Elementary risk instantiation” (based on attack graphs and the organisation’s database,
which includes information about assets, supporting assets, detrimental events,
and mapping between them).

3. ER calculation (likelihood, impact). Likelihood of occurrence depends on the attack
scenario and the affected vulnerabilities and it is calculated with the use of Markov
modelling. Impact depends on the consequences of the attack scenario.

4. CR calculation (aggregation of ERs).
5. Analysis of results.

By conducting a case study of a medium-sized ICT system, the authors were able to
show how the proposed model can dynamically quantify an organisation’s risk, and that
the concept of ER and CR improves the organisation security posture.

Gonzalez et al. [31] proposed a dynamic risk management response system (DBRMS)
which aims to quantify the risk of the monitored system and to produce response plans
consecutively, in order to address cyber threats. The authors utilised an attack graph
generator which uses as input information about connections among devices, a vulnerability
inventory, and a business model of the organisation (e.g., crucial assets), and produces as
output all possible attack scenarios. A Markov chain is used to determine the probability
that an attack will succeed, based on the attack path, along with properties associated
with the difficulty of exploiting a vulnerability. The impact is calculated based on the
consequences of the exploited vulnerability that resides in the business device. The threat
quantification module, through the use of elementary risk, calculates the risk value of an
event based on the probability and the impact. Using data collected from scans in a SCADA
system, the authors conducted experiments to demonstrate that the proposed model is
dynamic, since it can adapt to different input data and produces suitable response plans
in an automated way.

Wu et al. [32] recommended a security assessment approach based on an ontology
and an attack graph for ICS. The system’s assets, vulnerabilities, attacks, counter-measures,
and relationships between them are represented by an ontology using OWL. The created
security ontology represents attacks that pose a threat to assets (based on identified vulnera-
bilities) using SWRL rules. The attack graph is subsequently created through the utilisation
of an efficient algorithm, harnessing the inference capabilities of the security ontology.
The evaluation of the algorithm in different topologies and network sizes showed that the
proposed approach is suitable for enterprise networks.

Ivanon et al. [33] presented a method to assess risk based on an attack graph and two
security indicators for smart city infrastructures. The first indicator shows the importance
(type of node, running services) of the node which is being attacked, and the second one
(topological) presents the number of connected nodes that are going to be affected, also
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taking into consideration their importance. The attack graph can be constructed as an
output of penetration testing. In the next step, the total value of the system at risk is
calculated based on the aforementioned indicators. Afterwards, the protective measures
are applied in order to eliminate the most critical vulnerabilities. Then, the total risk value
of the system is recalculated (the value is reduced).

4.1.3. Neural Networks

Fu et al. [34] proposed a method for integrating quantitative and qualitative analyses
to provide an information security risk assessment for CPS. They used a Petri net for the
description of the system and its relationship with big data analysis (performed by experts)
in order to provide the right indexes for the neural network, so that the latter could provide
risk evaluation.

Ashiku et al. [35] presented a model according to which risk value in an organisation’s
network depends on the following variables: the quantity of workstations, typical user
roles, super user roles (users with increased awareness), daily work hours, open ports,
third-party users, data volume, and frequency of daily briefings to strengthen security.
The model receives additional enhancement through the utilisation of a balanced dataset
(network traffic) which is used as input for an external neural network. These are combined
to calculate the risk value. In addition, the model takes into account the applied defence
mechanism. Simulations showed that the risk value is linked to the annual incident cost
and it depends on the aforementioned variables and the defence mechanism in place.

Krundyshev et al. [36] analysed all possible risk assessment methods and suggested
that the most efficient methods to conduct risk assessments in smart city environments
are those which are based on AI, such as ANN, because they can deal with big data, and
they are quick and accurate. The authors used synthetic datasets and NS-3 to construct
a potential dynamic network of a smart city. They specified five potential attack types
(grey hole, black hole, DoS, DDoS, and wormhole) along with the probability of occurrence.
In the next step, device types were identified, based on the supposition that they performed
the same function in the system and interacted with the same number of devices of another
type. Device types could be traffic lights, medical sensors, vehicles, etc. In addition,
they took into consideration the interaction between devices. The authors established a
threshold for unacceptable risk, guided by the principle that assets impacting people’s
lives and health should have the lowest acceptable failure probability. In their simulated
environment, they created one training dataset and one test. Their neural network model
was built with the help of CORAS and TensorFlow, and it included:

• a 38-neuron input layer;
• one covert layer containing 20 neurons;
• one output layer.

They achieved 97% maximum classification accuracy.

4.1.4. Artificial Immunity—Rule-Based Machine Learning

A quantitative, immune-based dynamic risk control model for network security, con-
sisting of three different levels (user, processing, hardware), was introduced by Lin et al. [37].
The risk assessment module, the intrusion detection module, and the dynamic risk control
module were located at the processing layer. The first module was responsible for esti-
mating damage in a computer network or a system according to the threat level and the
vulnerabilities of the system. It was based on artificial immune theory, according to which
each attack category is simulated as an immune memory cell, and the antibody concentra-
tion value of the immune memory cells is calculated according to the intrusion detection
results. The risk assessment relies on the antibody concentration of immunological memory
cells, which, in turn, is influenced by detected data packages. When the system is under
attack, the concentration value is increasing and when the detection results are normal,
the concentration value is decreasing in real time. Experiments validated that the antibody
concentration and risk values increased while the attack was continuing.
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Another immune-based DRA method for digital virtual assets was proposed by
He et al. [38]. It comprises four stages: data collection and pre-processing, immune
detector training, antibody cell concentration, attack hazard value evaluation and threat
risk assessment. Based on the hierarchical division negative selection algorithm (HD-NSA),
the immune detector component identifies attacks or illegal behaviours on digital virtual
assets. The detected attacks are then categorised according to the taxonomy of digital
virtual asset attacks. By simulating the mechanism of antibody concentration alteration,
the threat to digital virtual assets is assessed upon the discovery of an attack. Immune
memory cell formation increases during active attacks and decreases as the attack intensity
diminishes. The final risk value is determined based on both antibody cell concentration
and the evaluation of the attack. The authors used data from a Bitcoin dusting attack in
order to show that the proposed method had the capability to rapidly and precisely detect
attacks, while concurrently evaluating the real-time risk of various users being attacked.

4.1.5. Association Analysis

A model to address cyber risk in a dynamic way for ICSs, based on association analysis,
was recommended by Qin et al. [39]. The model consists of two main components: proba-
bility inference and risk quantification. In the first part, system knowledge (description of
the system) along with historical security data are used to construct an association network,
which is the first input to probability inference component. In the second part, state vari-
ables (crucial assets of the ICT system) are mined together to create the association matrix.
The aforementioned process is described as the offline stage. In the online stage, real-time
data from the IDS are fed to the probability inference (second input) in order to predict the
probabilities of the system being attacked. The output of the probability inference is fed to
the risk quantification matrix and combined with the association matrix in order to produce
the final output (system’s risk). An association network is used to describe the association
matrix, which consists of three different layers of nodes (vulnerability layer, host layer, state
variable layer). A maximum likelihood estimation is used to create conditional probabilities
inside each layer. A case study was carried out by the authors on a coupling tanks control
system which showed that the model is able to adjust the system’s risk in real time when
the attack evidence from the IDS is increased.

4.2. Mathematical Model Methods

Models in this category utilise mathematical equations as their primary analysis method.
An automated risk quantification approach for computing infrastructures was sug-

gested by Awan et al. [40]. The risk score is defined as a product of:

• conditional probability of threat, which is calculated based on real-time traffic logs
extracted from the IDS over a specific time period;

• evaluation of the severity of each threat from the administrator;
• a constant weighting factor which ensures that threats with higher severity would

always have higher impacts (compared with threats with lower severity).

The authors tested their model using the seven most frequently occurring threats,
which were found in the collected log sample, to show that values of the specific threats
in the proposed model were different compared to values in other approaches, such as
snapshots, which only represented the value of the threat at a specific time slot. Their model
also provided a clear picture about pre- and post-variation trends in threats. They concluded
that their model can help a network administrator to evaluate potential threats effectively.

A similar framework was introduced by Awan et al. [41] to calculate the risk score of
a specific host on the network based on the software running on it. This framework uses
a formula which takes into consideration the conditional probability of a threat, which is
calculated from real-time data extracted from the IDS, the severity of the specific threat,
and a weighting factor (from the administrators’ evaluation), in order to calculate the risk
score quantitatively for a specific time period. By using real-time logs, the authors proved
that the risk associated with different software applications fluctuated over time.
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A model to quantify the risk of network’s vulnerabilities was proposed by Shu-Lee
et al. [42]. The model considers how a node is exposed to an untrusted network (danger
zone), the applied security mechanisms, and the CVSS values of all vulnerabilities at a
specific host, in order to calculate the adjusted vulnerability score for this host. The final
risk of a host is the combination of the adjusted vulnerability of this host and the adjusted
vulnerabilities values of its neighbours. The total risk of the network is calculated by
aggregating the risk of each host. The authors used a network simulation to prove that the
total risk of the network was reduced much more by eliminating the top vulnerabilities
ranked by their model compared to the elimination of the top vulnerabilities ranked by
the CVSS.

Two almost similar models were presented by Hong et al. [43] and by Qiao et al. [44]
for risk calculation. The first model applies on “energy internet infrastructure” and the
second on a computer network. Both of them depend on:

• Asset identification, which is based on experts’ opinions.
• Estimation of the dynamic threat, which is based on the rolling mechanism algorithm,

according to which a dynamic threat value is calculated based on historic past events,
similar to conditional probability.

• Vulnerability identification and scoring, for example, based on CVSS.
• Security relations between assets, which depend on the dependency structure matrix

(DMS) technique. According to DSM theory, there are three types of dependency rela-
tionships:

1. Parallel relationship: the functions of asset A do not affect asset B.
2. Sequential relationship: the functions of asset A affect asset B, but the functions

of asset B do not affect the function of asset A.
3. Coupled relationship: the functions of asset A and asset B depend on each other.

• Overall risk estimation, which is based on the propagation or conduct effect.

Both models illustrated their proposed approach with an example.
Tweneboah-Koduah et al. [45] proposed a model to address risk dynamically in

CI environments (such as the energy sector and its supporting technologies), based on
causal-loop diagrams, which are used to describe interdependencies between systems’ key
variables. Their model is based on eight vectors:

1. System characterisation—environment to be assessed.
2. Asset identification—critical assets to be protected, their value, container, and custo-

dian.
3. Threat analysis based on the system’s surroundings.
4. Vulnerability analysis—the system’s overall vulnerability and critical components

which are vulnerable.
5. Threat–vulnerability pair (TVP)—matching a threat to a vulnerability.
6. Control analysis—effectiveness of current counter-measures.
7. Likelihood, defined as the probability of a threat to exploit a vulnerability of an asset,

also taking into account the available counter-measures, which are graded based on
their effectiveness.

8. Impact analysis, which is proportional to the value of an asset.

Simulation results showed that a system’s security risk exposure depends on the
complexities of infrastructure interdependencies and the applied counter-measures.

A model which is based on an ontology was presented by Vega-Barbas et al. [46].
The model collects information about assets and threat events for a specific administrative
domain in order to evaluate them and present them by utilising an ontology language
(OWL). In addition, the model uses a semantic reasoner (SWRL) in order to create security-
related rules and to calculate the risk of a specific device or an operating system for a
specific asset. The model uses simple equations to calculate the total risk of the respective
administrative domain. The authors conducted a case study to show that their model is able
to calculate the total risk in real time and that this risk depends on the number of threats.
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Wang et al. [47] developed a fuzzy fractional differential equation-based method for
dynamic real-time network security risk detection. Accordingly, a quantitative network risk
model based on antibody concentration is applied in order to assess the risk. A tolerance
method is used in order for the system’s false positive rate to be reduced. The authors
carried out an experiment in a network security attack and defence laboratory, using
40 computers and simulating 20 kinds of attack, to prove that their proposed model can
quantitatively analyse the network’s current security state in real time.

Xiong et al. [48] introduced a model based on a dynamic offensive/defensive game
in order to evaluate quantitatively systems’ risk at CPSs. The authors used equations to
describe both the attacker’s and defender’s actions. The model considers constraints on
both sides, such as the quantity of resources available, their distribution, cost effectiveness,
and the number of attacked nodes. The model is built based on the logic that both the at-
tacker and the defender try to maximise their benefits by adjusting their resource allocation.
Simulations showed that their success depends on their resource allocation strategy.

A different approach for DRA calculation in fog computing was presented by Feng
et al. [49]. More specifically, the authors proposed a model composed of three entities: a
fog computing provider, an attacker, who belongs to an APT (advanced persistent threat)
group, and a cyber insurer. The model shows that in order for the fog provider to prevent
potential losses due to successful cyber attacks, a dynamic subscription to the cyber insurer
for each fog node is necessary. The model uses mathematical formulas to calculate the
probability of a successful APT attack/defence and the expected payoffs accordingly.

A model addressing cybersecurity-related risks in nuclear power plants was recom-
mended by Vaddi et al. [50]. The model employs mathematical formulas and equations
to calculate the system’s state at any given time, along with computing the expected re-
wards for game theory-based cyber attack modelling, providing a quantitative approach to
risk assessment.

Liu et al. [51] suggested a quantitative and DRA framework aimed at analysing threats
and vulnerabilities in AC/DC hybrid transmission systems under coordinated physical-
cyber attacks with the use of CVSS scoring. In the proposed framework, the actions of
the defender and the attacker are mathematically formulated to determine their optimal
strategies. The dynamic game theory is employed to show the interactions between the
two aforementioned parties, where the attacker’s goal is to maximise their impact on
the system, and the defender tries to minimise the potential damage caused by attacks.
The authors conducted case studies using a modified IEEE 14-node AC/DC hybrid test
system, demonstrating how defence and attack strategies affect the system’s functionality
under coordinated attacks. In addition their findings revealed that false data injection (FDI)
attacks pose a great threat to AC/DC hybrid systems.

Yan et al. [52] proposed a DRA model for CPSs. The model assesses the physical
consequences that can be caused in a SCADA system by cyber attacks quantitatively.
The CVSS scoring is used to estimate the severity and exploiting probability of software
vulnerabilities (SVs). The model takes into account various attributes such as time, the
attacker’s characteristics, network security defence mechanisms, and propagation, utilising
mathematical formulas in order to assess the probability of exploiting different possible
attack paths. The effectiveness of the model was validated through simulations on modified
IEEE 14-bus and 118-bus systems. Additionally, the model identifies high-risk substations
within the CPS network.

4.3. Unclassified

This category includes models that do not fit into any of the aforementioned categories.
Naumov et al. [7] proposed a DRA framework (in an initial version) using system

dynamics to understand how the vectors of risk and the exposure of organisations to these
risks changes over time, based on casual-loop diagrams (CLDs).

Rao et al. [53] utilised cumulative distribution functions (CDFs) in order to model the
normal behaviour of a medical device which is used to quantify the probability of a security
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threat in real time. In this way, the model detects deviations from normal executions and
they estimate the presence of a threat which affects each operation. Each component is
assigned an initial risk value based on its criticality. When a threat is detected and the risk
value exceeds the threshold, the mitigation measures are applied. Medical devices of this
kind are considered complex CPS. A smart-connected pacemaker case study illustrated the
effectiveness of the proposed approach.

A dynamic impact assessment approach for ICS was presented by Li et al. [54]. The sys-
tem abstracts an asset alongside with its properties, and then it uses function and perfor-
mance properties to categorise assets into five categories (based on the functionality of
an asset inside the system), and then the component-level asset model is formed. A
system-level asset model is formed based on the interactive relationships amongst assets.
In addition, the system uses as input information originating from the IDS, which is injected
into the asset model (component and system) in order to form impact propagation analysis.
A combination of the knowledge from the asset, attack, and hazardous incident domains
is analysed in order to form the quantification of impact. The latter is combined with the
output of the impact propagation analysis to produce the total impact. Simulations on a
simplified chemical process control system showed the ability of the proposed approach to
predict dynamically and in a timely fashion the impact of a cyber attack.

A qualitative risk assessment method which could be used by all stakeholders was
introduced by Erdogan et al. [55]. The method is composed of three steps:

1. Creation of a security risk model with the use of CORAS, which contains indicators
about a system’s vulnerabilities, suspicious events, and potential consequences on
business processes. CORAS is a method which can be used for risk analysis.

2. Development of the security risk assessment algorithm with the use of CORAS and
DEXi to create the attributes and relationships of the system and to calculate the risk
based on them. DEXi is a programme that is used for multi-attribute decision making.
The specific algorithm facilitates the continuous risk assessment process.

3. Validation of the results.

The authors applied the proposed method to develop CORAS models and correspond-
ing DEXi models for 10 common cyber attacks and concluded that their method is easy to
use and it can be easily adopted by security and risk practitioners.

Armenia et al. [56] recommended a new dynamic model in order to assess the cyber-
security risk in SMEs, which is named SMECRA (SME cyber risk assessment), and it is
mostly based on the Italian cybersecurity framework for cybersecurity and data protec-
tion [57]. The model considers various interdependent aspects addressed by NIST and
their relationship over time in order to create stocks and flows to describe the as-if (current)
situation of the system. Stocks and flows are interconnected and a change to one of them
may lead to a bigger or smaller change to another (stock or flow). The CLD approach is
used to map relationships between elements. Then, the model utilises a snapshot survey
(the paper contains 15 essential controls for SMEs) with the combination of a weighting
system to model the relative importance of its question with respect to the category it
belongs. More than 50 equations are used to describe relationships between variables in the
system and to produce the respective results (e.g., expected damage loss from a successful
attack). The authors used two real companies as references, one with a low cybersecurity
posture and one with high. Simulation results showed that even when the second company
operated in a high-threat environment and the first in a low, the second company was
much more resistant to cyber attacks, and hence expected damage loss from a cyber attack
was lower.

Gonzales-Granadillo et al. [58] proposed AMBIENT, a model which is capable of
handling both cyber and privacy risks within the same toolkit. The part that handles
the cyber risk is the cyber risk assessment component, which gathers large volumes of
cybersecurity-related data in real time and correlates them in order to assess the risk.
The CORAS tool is used for graphical risk analysis, DEXi and fuzzy logic are used to
produce qualitative results in terms of risk (likelihood, impact), while the R programming
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language is used to produce quantitative reports in monetary terms. Afterwards, the
appropriate counter-measures are proposed in order to reduce the risk. The model was
tested using a real test-bed scenario considering the working environment of a hospital
from the ICT perspective. The results of the test showed that the model was able to quantify
risk in monetary terms, and also to provide effective mitigation measures. The efficacy of
the proposed measures was validated by experts.

Liatifis et al. [59] presented a framework which enhances the cybersecurity of EPES
infrastructure. The framework relies on a security information and event management
system (SIEM) that detects and correlates diverse security events, utilising comprehensive
input data from various sources such as IDSs and firewalls. Each security event is assigned
a risk value derived from a predefined quantitative formula involving asset value, event
priority, and event reliability. The RA module examines new energy-related cyber threats
and vulnerabilities from various public repositories, such as CTI sharing modules and
CVSS scores to compute risk values.

Rao et al. [60] recommended a risk evaluation methodology for life-critical embedded
devices, including medical devices, named FIRE, which integrates both static and dynamic
RA in order to produce quantitative results. This methodology also relies on CDFs which
are used to define the static risk thresholds. The dynamic risk is based on the run-time
risk determined by comparing the actual risk in each mode to the static risk thresholds.
FIRE’s effectiveness was demonstrated through a case study, demonstrating successful
threat mitigation and achieving a 0% false-positive rate.

Semertzis et al. [61] proposed a quantitative DRA model for cyber attacks on CPSs,
with a specific focus on power systems. The authors use probability distribution along
with CDFs to model the skills of attackers, employ NVD data to identify vulnerabilities,
and examine potential attack paths using attack graphs. The simulations showed that
certain cyber attacks could cause serious impact on power systems, such as cascading
failures and blackouts.

Hu et al. [62] introduced a dynamic risk propagation and evaluation approach, which
predicts attacks and quantitatively analyses system’s risk. This approach utilises a “par-
titioned cellular automata” model to handle variations amongst different parts of the
CPSs. In addition, it takes as input information originating from an IDS. It comprises
two modules: the offline, which is used for creating risk analysis models considering the
impact of attacks; and the online, for the prediction of risk propagation and quantification
of the risk. The effectiveness of the proposed approach was validated through a case
study utilising a co-simulation platform that included communication control and electrical
power networks.

A tool named CyberSAGE was presented by Temple1 et al. [63]. It consists of three
main inputs:

1. The system architecture, which is represented as a graph of interconnected compo-
nents along with device specifications and mitigation properties.

2. The malactivity scenario, which describes the attacker’s steps to compromise the system.
3. The adversary profile, which provides details regarding the attacker’s skills, resources,

access, and intentions.

The rule engine then combines the aforementioned inputs to generate a security graph
which demonstrates how the attack steps in the malactivity scenarios can be applied to the
system architecture in order for the attackers to achieve their goal. An evaluation of the
tool was conducted on communication systems on two railway lines to illustrate the tool’s
application and validity.

Riesco et al. [64] proposed a model that connects two different domains, the cyber
threat intelligence (CTI) domain, which acts in real time, and the RA domain, which acts
periodically based on collected data. This model proposes the use of web ontology language
(OWL) to capture real-time CTI information in OWL format and feeds them into the DRA
ontology. Then, a semantic web rule language (SWRL) is used to create rules based on
business logic. Finally, the Pellet incremental reasoner is applied in order to automate the
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risk discovery process based on the collected CTI data and the SWRL rules. The model was
tested simulating a real-world watering-hole attack in a cybersecurity organisation and
managed to update risk values based on collected information.

Collen et al. [65] suggested a DRA framework (DRAF) for IoT-enabled environments,
focusing on the smart home domain. This model utilises an ontology-based approach to
model risk assessment in order to provide a risk scoring model. The DRAF incorporates
data from multiple sources along with reports from various strategies, adapting risk scores
using expert weight values and feedback from end-users to produce quantitative results.
The framework was validated through real-life trials, demonstrating its ability to detect
risks and provide mitigation advisories in a timely manner.

5. Discussion

In this paper, we analysed 50 DRA models, and we classified them into three distinct
categories based on the underlying technique or primary analysis method they utilised.
The vast majority (24/50) of the examined models employ AI/ML techniques as their
primary analysis method. This finding agrees with Erdogan et al. [13], who pointed out
that RA processes should adopt AI techniques in order to be able to identify and estimate
cyber risk in high-threat environments. Another noteworthy finding is the presence of
three models categorised as “unclassified”, that employ CDFs in conjunction with other
techniques to construct their DRA models.

5.1. Primary Analysis Method

Regarding the specific AI/ML primary analysis method, it is clear from our research
that the majority (11/24) of the examined models adopt Bayesian networks. The second
most used method of this category is attack-trees. This finding partially agrees with the
results from Erdogan et al. [13] who found out that Bayesian networks along with neural
networks were the two most used methods. Tables 4 and 5 present the aforementioned find-
ings, also providing the answer to RQ1. In further detail, Table 4 illustrates the distribution
of models across each domain (vertical axis) in relation to the primary methods employed
by those models (horizontal axis). Similarly, Table 5 presents the results focusing on the
specific analysis methods from the AI/ML category and their corresponding domains.

Table 4. Primary analysis method applied to each domain.

Domains AI/ML Mathematical Unclassified

ICT 9 6 6
ICS 13 7 6
SC 2 1

Table 5. AI/ML primary analysis methods applied to each domain.

Domains Bayesian
Networks Attack Trees Neural

Networks
Artificial

Immunity
Association

Analysis

ICT 4 3 2
ICS 7 3 2 1
SC 1 1

5.2. Domains and Application Areas

Another significant outcome of our analysis pertained to the domains where the
proposed DRA models were applied (RQ2). Utilising a grouping technique, we sought to
investigate three distinct domains. These were the SC domain, the ICT domain, and the
ICS domain. More specifically, 3 DRA models (6%) were applied in the SC domain, 21 DRA
models (42%) were applied in the ICT domain, and 26 DRA models (52%) were applied
in the ICS domain. The obtained result was anticipated, given the inherent significance of
the ICS domain in the context of cybersecurity. Moreover, the crucial functions performed
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by ICS and the potential severe consequences of cyber attacks, which could even result in
fatalities, naturally drive significant attention towards bolstering cybersecurity measures
for ICS systems. The successful execution of a cyber attack on an ICS infrastructure
could indeed lead to catastrophic outcomes. Hence, there exists a compelling rationale
for intensifying efforts in detecting and mitigating cyber threats specifically targeting the
ICS domain.

5.3. Quantitative or Qualitative Methods

Regarding our third research question (RQ3), 42 out of the 50 models seem to apply
quantitative risk analysis. Four of the examined models can be characterised as hybrid since
they use both quantitative and qualitative risk analysis. All models currently employed
within the ICS domain utilise quantitative risk analysis, with the exception of one. This
result agrees with Qin et al. [39], who claimed that quantitative risk analysis methods
are gaining the majority of attention in the ICS domain. Additionally, the vast majority
of the examined models applied in the ICT domain currently utilise a quantitative risk
analysis method, which is the preferred RA method in IT security management [66]. Four
models cannot be classified in terms of the quantitative or qualitative risk analysis method.
The results are summarised in Table 6.

Table 6. Quantitative vs. qualitative methods.

Methods Quantitative Hybrid Qualitative Cannot Be
Classified

# DRA models 42 4 1 3

Models that utilise quantitative risk analysis collect data from their environment
and analyse them using a predefined method [39]. Quantitative methods provide a more
accurate reflection of the system status than qualitative [67]. Qualitative RA methods
provide subjective results and lack precision [68]. In addition, the output of quantitative
risk analysis is measurable and more accurate compared to qualitative [39]. Therefore,
DRA, apart from the dynamic response to emerging threats, can also contribute to the use
of more objective and measurable outputs in risk assessment.

5.4. Input Data

Regarding the input that the proposed models use (RQ4), many of them collect and
use the system’s information (system’s knowledge) originating from the environment in
which they operate, such as network topology, assets, dependencies, and relationships
between nodes, the system’s functions, and services. The component that is used the
most (16/50) is the IDS, which provides the DRA models with real-time data. In addition,
22 of the examined models use some kind of vulnerability-related data as input. These
data originate from local vulnerability databases or inventories, or from open sources
(NVD, CVSS) used for evaluating and scoring known vulnerabilities, or are the output of a
vulnerability scanner.

Another noteworthy remark regarding the input data utilised by the examined models
is that 13 of them incorporate experts opinions and estimations from system administrators.
Before being fed into the model, this type of data are integrated with information sourced
from objective outlets like IDS, historical data, or system knowledge. Most of the examined
DRA models use a combination of input data, for example, system knowledge and data
from an IDS. This finding aligns with the assertions of Berestov et al. [69], who emphasised
the importance of a system’s capacity to collect and correlate diverse data types to facilitate
process automation. This is particularly relevant to DRA models, as they can effectively
incorporate and utilise such processes. Additionally, it is in line with the perspectives put
forth by Ralston et al. [70], who highlighted the necessity of synthetic data (multiple sources)
for the analysis of cybersecurity risk through most quantitative methods. Furthermore,
the result is consistent with the observations made by Larriva et al. [71], who emphasised
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the potential benefits of utilising the substantial volume of data generated by organisations
and companies to discover emerging threats in RA methodologies.

5.5. Maturity Level

Regarding our study’s last research question, about the maturity level of the proposed
methods (RQ5), we applied grouping once again and adopted three different levels of
maturity. Level 3 maturity applies to those models that present relative simulations,
case studies, and experiments. Models classified under this category showed the highest
maturity level since they were proven to be efficient and ready to be applied. Level 2
maturity applies to models which presented examples and proof of concepts to demonstrate
their functionality. Level 1 maturity models were those which did not provide any of the
above. Table 7 presents the number of models that belong to each of the aforementioned
categories. In total, 46 models validated their proposed approach, although there is a
difference between level 3 and level 2 with respect to maturity, since models categorised
in level 2 present the effectiveness of the proposed model with a more simple and less
complex example compared to models that were categorised under level 3.

Table 7. Number of models to each maturity Level.

Maturity Level 3 2 1

# DRA models 38 8 4

5.6. Limitations of DRA Models and Challenges

Our research revealed a noteworthy limitation among the majority of proposed mod-
els, i.e., their deficiency in proactive capabilities due to the limited integration of CTI-related
information. DRA models primarily focus on real-time data concerning ongoing activities
within an organisation’s environment, typically sourced from systems like an IDS. Em-
bedding proactive functionality within these DRA frameworks holds substantial potential
for enhancing organisations’ security postures by enabling proactive threat preparedness.
The significance of CTI knowledge has been underscored as a pivotal instrument for proac-
tive cyber risk mitigation [72]. By integrating relevant CTI data, such as information
on recently discovered vulnerabilities and emerging threats, DRA models are capable of
proactively reassessing the existing risk level.

A similar limitation illuminated by our research reveals that a significant majority of
DRA models do not harness historical data or incorporate past events into their analyses;
instead, they predominantly concentrate on monitoring ongoing activities. This dearth
of historical context within DRA modelling can hinder their ability to derive valuable
insights from past incidents, potentially leading to a less comprehensive understanding of
threat dynamics.

Our research substantiates that DRA models rely on a wide range of data sources for
input. Distributed data fusion, a process involving the integration and analysis of informa-
tion from diverse data sources, emerges as a pivotal method for achieving a comprehensive
and precise understanding of a given environment or system. Within the domain of DRA
models, the attainment of real-time and precise results assumes paramount significance.
The utilisation of data fusion techniques has demonstrated effectiveness in various ap-
plications. The LLPTE scheme [73] can improve DRA models to amalgamate disparate,
inconsistent, uncertain, or even redundant data. Additionally, this framework for threat
intelligence extraction and fusion [74] can provide DRA models assistance in correlating
and unifying data. By employing these techniques, DRA models can enhance the quality of
input data assimilated, leading to more consistent and accurate outcomes.

In addition to data fusion, the incorporation of trust evaluation techniques can further
enhance the accuracy and precision of fused results [73]. Trust evaluation techniques as-
sume an even more critical role when contemplating the deployment of DRA models within
a zero trust environment (ZTA). In such a context, DRA models are tasked with processing
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substantial volumes of data, serving as input for real-time risk-based decision making.
Given the diverse array of data sources, including untrusted and even potentially mali-
cious ones, the utilisation of trust evaluation techniques by DRA models can enhance their
trustworthiness. Trust evaluation methods, such as TFL-DT [75], have demonstrated their
efficacy in identifying malicious users and should be adopted by DRA models. In addition,
trust evaluation models can also be used not only to identify malicious users (data sources)
but also to quantitatively evaluate the source of information [76] in order to increase even
further the accuracy and preciseness of the data used as input by DRA models.

Future DRA models should prioritise the development of effective operations within a
ZTA environment, giving due consideration to both data fusion and trust evaluation schemes.
These techniques will enhance the quality of input data, a significance that becomes even
more pronounced in a ZTA environment, enabling DRA models to produce accurate and
precise results while upholding the imperative of delivering real-time outcomes.

5.7. Study’s Limitations

Not all models provided relative information about the necessary resources in order
to operate efficiently and, hence, we were not able to provide an analysis on this subject.
In addition, few of the proposed approaches proved their effectiveness by providing
relative evaluations without utilising any of the categories we used in the maturity levels
classification, and we had to match their respective evaluation to the most suitable one
of our categories. Finally, no adequate information was provided by all methods with
regards to the actual risk assessment parameters they contribute to, i.e., asset impact, threat
likelihood, vulnerability criticality, risk calculation and, therefore, we could not clarify
them under this categorisation.

6. Conclusions and Future Work

From our study it was clear that most of the proposed DRA models in the area of
cybersecurity adopted AI and ML techniques as their primary analysis method. Among all
of the techniques in this category, Bayesian networks were the most used. Furthermore,
predicated upon our analysis, it becomes evident that the domain of ICS garners the
majority of attention concerning DRA models within the realm of cybersecurity. The vast
majority of the examined models seemed to have adopted quantitative risk analysis. DRA
models utilise objective data sources derived from their respective environments, with the
most frequently used component being the IDS. Furthermore, a notable proportion of these
models integrate various types of vulnerability-related data as part of their input. Most of
the examined models validated their approach providing a relative case study or simulation
example, thereby demonstrating a commendable level of maturity in their approach.

Our future work will focus on the development of a DRA model that harnesses
information originating from its environment, akin to the aforementioned models. This
approach will be augmented by the assimilation of insights from CTI, thereby endowing
our model with the capability to exhibit not only reactive but also proactive behaviour.
We hold a firm conviction that the integration of CTI into DRA models will significantly
enhance their overall effectiveness, empowering them with the capability to proactively
respond to emerging threats.

Prospective research endeavours can employ this literature review as an inaugural
cornerstone, facilitating the attainment of a robust comprehension concerning DRA models
within the domain of cybersecurity. We earnestly advocate for forthcoming studies to make
reference to Table A1. This tabular representation encapsulates all the aforementioned
findings in a systematic and analytical manner, offering conclusive insights into the five
research inquiries delineated in this manuscript.
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Appendix A

Table A1. Research papers included in the review and their characteristics.

Author Year Domain Risk Anal-
ysis Input Maturity

Bayesian Networks (Section 4.1.1):

Cam et al. [16] 2013 ICT Quantitative IDS + NVD + network of cyber assets example
Cam et al. [17] 2015 ICT Quantitative IDS + vulnerability scanner + CVSS simulation
Henshel et al. [18] 2016 ICT Quantitative experts’ opinion example

Zhang et al. [19] 2016 ICS Quantitative
attack evidence (IDS) + anomaly evidence + sys-
tem’s knowledge (vulnerabilities related data in-
cluded)

simulation

Huang et al. [20] 2017 ICS Quantitative IDS + vulnerability scanner/CVE + historical
data/experts’ opinion simulation

Peng et al. [21] 2018 ICS Quantitative security Knowledge DB (vulnerabilities related
data included) + real-time attack evidence simulation

Zhu et al. [22] 2018 ICS Quantitative attack evidence (IDS) + system’s knowledge + con-
trol strategies simulation

Zhang et al. [23] 2018 ICS Quantitative attack evidence (IDS) + anomaly evidence + sys-
tem’s Knowledge simulation

Zhu et al. [24] 2019 ICS Quantitative IDS simulation
Debneath et al. [25] 2022 ICT Quantitative system’s knowledge + CVSS + IDS experiment
Zhou et al. [26] 2022 ICS Quantitative network topology + CVSS simulation

Attack Trees (Section 4.1.2):

Kotenko et al. [27] 2013 ICT Hybrid IDS + CVSS + network topology data
Ji et al. [28] 2013 ICS Quantitative system’s vulnerabilities case study
Abraham et al. [29] 2015 ICT Quantitative CVSS + network model + services on each host case study

Kanoun et al. [30] 2016 ICT Quantitative vulnerability DB + system topology + detrimental
events case study

Gonzalez et al. [31] 2018 ICS Quantitative system’s knowledge + vulnerability inventory case study

Wu et al. [32] 2018 ICS Quantitative security knowledge of the system (vulnerabilities
related data included) simulation

Ivanov et al. [33] 2020 SC Quantitative penetration test/security scanner output example
Neural Networks (Section 4.1.3):

Fu et al. [34] 2017 ICS Hybrid big data analysis by experts
Ashiku et al. [35] 2020 ICS Quantitative system’s knowledge + network traffic dataset simulation
Krundyshev et al. [36] 2020 SC Quantitative synthetic data simulation

Artificial Immunity (Section 4.1.4):

Li et al. [37] 2018 ICT Quantitative IDS experiment
He et al. [38] 2021 ICT Quantitative asset-related data of cyber attacks experiment

Association Analysis (Section 4.1.5):

Qin et al. [39] 2021 ICS Quantitative IDS + historical data + system’s knowledge case study

Mathematical model methods (Section 4.2):

Awan et al. [40] 2015 ICT Quantitative IDS + administrators’ estimations experiment
Awan et al. [41] 2015 ICT Quantitative IDS + administrators’ estimations experiment

Shu-Lee et al. [42] 2015 ICT Quantitative topological data + applied security mechanism +
CVSS simulation

Hong et al. [43] 2017 ICS Quantitative CVSS + experts’ opinion + historical data example
Qiao et al. [44] 2018 ICT Quantitative experts’ opinion + historical data example
Tweneboah-Koduah et al. [45] 2018 ICS Quantitative experts’ evaluation simulation
Vega-Barbas et al. [46] 2019 ICS Quantitative assets + threats events case study
Wang et al. [47] 2020 ICT Quantitative current and historical network security data simulation
Xiang et al. [48] 2020 ICS Quantitative constrain conditions on both sides simulation
Feng et al. [49] 2021 ICT Quantitative resources of attacker and fog computer provider example

Vaddi et al. [50] 2022 ICS Quantitative system’s knowledge + abnormal events proof of
concept
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Table A1. Cont.

Author Year Domain Risk Anal-
ysis Input Maturity

Liu et al. [51] 2023 ICS Quantitative attackers’/defenders’ strategies + CVSS case study
Yan et al. [52] 2023 ICS Quantitative system’s knowledge + CVSS simulation

Unclassified (Section 4.3):

Naumov et al. [7] 2016 ICT
Rao et al. [53] 2017 ICS Quantitative run-time metrics case study
Li et al. [54] 2018 ICS Quantitative IDS + Knowledge from related domains simulation

Erdogan et al. [55] 2018 ICT Qualitative system’s vulnerabilities + suspicious events + po-
tential consequences on business process example

Armenia et al. [56] 2021 ICT Hybrid snapshot survey case study

Gonzales-Granadillo et al. [58] 2021 ICT Hybrid vulnerabilities + business Indicators + system’s
data case study

Liatifis et al. [59] 2022 ICS SIEM security logs
Rao et al. [60] 2022 ICS Quantitative run-time metrics case study
Semertzis et al. [61] 2022 ICS Quantitative known vulnerabilities + skills of attacker simulation
Hu et al. [62] 2023 ICS Quantitative IDS case study

Temple et al. [63] 2023 ICT Quantitative system’s architecture + mal-activity scenario + ad-
versary profile case study

Riesko et al. [64] 2019 ICT system’s knowledge simulation
Collen et al. [65] 2022 SC Quantitative system’s knowledge + strategies + experts’ opinion case study
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